Assignment Four:
Using Condor-G to Submit a Job to the Grid

Version 0.31 (August 27, 04)

Written by Jeffrey C. House

CS 493: Grid Computing (Fall 2004)

Instructor: Dr. Barry Wilkinson

Overview

The objective of this fourth assignment is for you to understand how to submit a job to a grid using Condor-G and Globus Resource Allocation Manager (GRAM). This assignment will take you through the steps necessary to submit a precompiled job to Condor-G. Towards the end of the assignment, you will be required to submit a Java job to Condor-G.

Specifics

We will:

· In the first shell logon to venus.cs.wcu.edu with the same login information as terra.

· Start a proxy process

· Use the condor_status command to get the status of the condor pool

· Create a submit description file that describes your job to Condor-G.

· Use the condor_submit command to submit a job

· Use the condor_q command to get the status of a job

· Use the condor_rm, condor_hold , and condor_release commands to manage the job.

· Use the condor_history command to view information of the completed job.

· Write, compile, and submit your own job

Step 1: Getting Started.

As described in assignment one, logon to your account on venus.cs.wcu.edu (via your account on sol.cs.wcu.edu). When you log in you current directory initially is /home/username where username is replaced by your username. You should assume that substitution everywhere in the rest of this handout.

Step 2: Start a Proxy

Start a proxy process using the following command. Note that it is essential to use the “-old” argument, because Condor-G does not yet support the new proxy format provided with the Globus Toolkit 3.2.
[username@venus username]$ grid-proxy-init -old
You will then be prompted for your pass phrase which is

globus

Step 3: Check the status of the Condor pool

The Condor pool is a group of computers that can submit or execute programs given resource requests and restraints of both machines and programs. Before you begin submitting jobs to the Condor pool, it is nice to check its status. You can do this with the command condor_status.

The output should look similar to the following:

[username@venus username]$ condor_status

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

jupiter.cs.wc LINUX INTEL Owner Idle 0.000 249 0+00:30:11

venus.cs.wc LINUX INTEL Unclaimed Idle 0.000 501 0+00:10:04

 Machines Owner Claimed Unclaimed Matched Preempting

INTEL/LINUX 2 1 0 1 0 0

Total 2 1 0 1 0 0
The listing above shows that there are two machines in the condor pool; Jupiter and Venus, both running Linux.
Step 4: Create a test submit description text file
Condor allows you to submit almost any type of C, C++, Perl Scripts, and Java Programs to its batch system. A Universe in Condor-G defines an execution environment. Condor has several different Universes which include Standard, Vanilla, Java, and Globus. Executables submitted to Condor have restrictions which they do have to adhere to. The executables may not have any interactive input such as GUI’s, etc. However, you can still use STDIN, STDOUT, and STDERR for IO, except files are used instead.

In order to submit jobs through Condor-G to Globus you need to create a text file that describes your job. Create a text file named test1 with the following contents:
Contents of test1:

executable = /usr/bin/uptime

globusscheduler = venus.cs.wcu.edu/jobmanager

universe = globus

output = test1.out

log = test1.log

queue

This description file tells Condor that we want to execute the executable uptime, in the Globus universe, using the job manager located on venus. In the submit description you can specify the name of a log file, in this case test1.log. The output of the executable is directed to the text file named test1.out.
Step 5: Submit your job
You are now ready to actually submit and run your job. The command to use is:

[username@venus username]$ condor_submit test1
Below is a listing of the result of running this command

[username @venus username]$ condor_submit test1
Submitting job(s).

Logging submit event(s).

1 job(s) submitted to cluster 6.
The listing simply tells you that you successfully submitted one job to the Condor pool.

Step 6: Check the status of your job

It might take a few minutes before your job is executed, in the meantime you can check it’s status by using the command condor_q. When your job is completed, it will no longer appear in the Condor queue. Below is a listing of the example run:
 [username @venus username]$ condor_q

-- Submitter: venus.cs.wcu.edu : <152.30.5.102:32790> : venus.cs.wcu.edu

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

 6.0 username 8/9 13:47 0+00:00:00 I 0 0.0 uptime

1 jobs; 1 idle, 0 running, 0 held

Above you see that the job has been submitted to the Condor Pool and is the only job in the queue. The Job ID of this particular job is 6.0. Notice the “ST” column in the listing above. The “ST” column is where the status of your job is displayed. The status of the job is “I”, which means the job is currently idle, waiting to be executed. Other status symbols are “R” which stands for running, “C” for complete, an “X” if the job was removed via condor_rm, and “H” if the job was held.

The condor_q command requires some comments.

· There are many different arguments condor_q takes which can give different output.

· ”condor_q –globus” shows you all Globus jobs that have been submitted.

· ”condor_q –l” gives you very detailed information about the job you are submitting.
· ”condor_q –analyze” tells you what machine(s) that accepted your job or if the job has been held. Note that even if a job was rejected and held that it will eventually run when the machine requirements are met.
Step 7: Manage Your Job

There are different commands that Condor gives you that aid in the management of your job. The commands are condor_rm, condor_hold, and condor_release. Below are some brief descriptions of what each command does.

The condor_rm command…

· Allows you to remove a job given its Job ID or allows you to remove all jobs at once.

· You can only remove your jobs, not the jobs of other users.

· ”condor_rm jobID” marks the job with the specified jobID for removal.

· ”condor_rm –all” marks all the jobs you have in the Condor queue for removal.
· Sometimes, a job might get stuck in the queue and it will not budge even when executing the command ”condor_rm –all”. To remove stuck jobs in the queue with the “X” status symbol, use the command ”condor_rm –all -forcex”.
The condor_hold command…

· Allows you to place a job on hold given its Job ID or allows you to place all jobs on hold at once.

· Placing a job on hold will kill the job if it is running.

· Any job you place on hold will not attempt to restart until you have removed the hold via condor_release so that the job may be rescheduled.

· ”condor_hold jobID” marks the job with the specified jobID to be placed on hold.

”condor_hold –all” marks all the jobs you have in the Condor queue to be held.

The condor_release command…

· Removes holds placed on a job and allows for that job to be rescheduled.

· ”condor_release jobID” marks the job with the specified jobID to be released and rescheduled.

· ”condor_release –all” marks all the jobs you have in the Condor queue to be released and rescheduled.
Step 8: Viewing Information about the Completed Job
If there is one thing Condor excels at, it is giving you plenty of information about a job. When you created the submit description file in step 4, you specified the names of the log and output files. You can view the test1.out file to see the output of the job you ran. You can also view the test1.log to see the Condor log for your job.
When a job is completed Condor will also send you an email to your venus account describing the jobs run. You will be notified of this email after your job is complete and the email has been sent. This notification will come to you through the output of any of the Condor commands. This will only occur if you set the notification and e-mail addresses as shown later on in the assignment. The notification will look similar to the following:

"You have new mail in /var/spool/mail/username"
You can view the email with the following command:
[username @venus username]$ cat /var/spool/mail/username

There is still one more Condor command which can tell you about a job, and that is condor_history.

[username @venus username]$ condor_history
Step 9: How to submit a Java Job to different Universes

Recall in Step 4 that when you created the submit description file you specified that the job was to be submitted to the Globus universe. Also, recall that Condor has several Universes. In this assignment we are interested in using the Java and Globus Universes. Below is an example submit-description file named javatest. The example submit-description file describes submission of a java class file named example.class to be executed on some machine’s Java VM.
Contents of javatest:
universe = java

executable = example.class

arguments = example arg1 arg2 arg3
transfer_input_files = OtherClass1.class OtherClass2.class

output = javatest.out

log = javatest.log

error = javatest.err

queue
In the file above we set the universe to be the java universe and set the executable to be the example.class file. The arguments attribute specifies the name of the class that the Java VM will execute and it is always necessary to specify it. You can also specify what command line arguments should be passed to the program. If your Java program consists of multiple class files you can set the transfer_input_files attribute to a space separated list of class files.

The next example submit-description file is used to describe the submission of a Java job to the Globus Universe.

Contents of globustest:
executable = example.class

transfer_input_files= example.class

globusscheduler = venus.cs.wcu.edu/jobmanager-condor

universe = globus

globusRSL = (condor_submit=(universe java))

arguments = example
transfer_files = ALWAYS

should_transfer_files = YES

when_to_transfer_output = on_exit

output = globustest.out

log = globustest.log
notification = ALWAYS

notify_user=someone@somewhere.com
queue

When you submit a Java job the Globus Universe it is necessary to transfer example.class to the Condor job manager on venus. You also need to tell Condor that it should always transfer files. Since Globus does not see a Java class file as an executable, you need to tell the job manager that a Java job is being submitted. This is done by setting the globusRSL attribute. Since you have to perform this minor workaround to submit a Java job to the Globus job manager, you should have Condor transfer all files output by the program run when the program exits. This is done by setting when_to_transfer_output to on_exit
Step 10: Write, Compile, and Submit Your Own Job

In this final step you will create your own java program to submit through Condor-G to the Globus scheduler using the Globus Universe. In addition, your Java job will also need to be submitted through the Java Universe. The following bulleted items highlight what you need to do to in order to get full credit for this assignment.
You need to create two submit description files. One will describe your java job to submit to the Java Universe, the other will need to be a submit description file for submitting your job to the Globus scheduler on venus.cs.wcu.edu. (For extra information on how to do this, research the arguments “transfer_output_files” and “when_to_transfer_output”.
· You need to create two submit description files. One will describe your java job to submit to the Java Universe, the other will need to be a submit description file for submitting your job to the Globus scheduler on venus.cs.wcu.edu

· Your java program will need to send its output to both the console and to a text file.

· Your java program needs to gather information about the machine it will be run on. You will use the InetAddress class in java.net package to query the machines IP address, Hostname, and Canonical Hostname. This information needs to be displayed. (More information on InetAddress is available from the Java API, located at http://java.sun.com/reference/api)
· You will need to time your java program from start of execution until the program is finished. You can use System.currentTimeMillis() to get the time in milliseconds since midnight, January 1, 1970. This information also needs to be displayed.
· Your Java program will also need to perform plenty of work to be worthy of being submitted as a job. Your program should create an array of two dimensional points with Random coordinates. Your array should hold at least 25 points. Your program must accept a command line argument that specifies how many points to allocate in the array. You will need to set the argument in the submit description files you create. The points in the array represent a continuous set of joined lines. Each point and the point immediately following it represent a line segment. Your Java program should calculate the distance between a point and the point that is next in the array. In figure 1 below, the shortest distance (shown as a green line) is from P1 to P2, and the longest distance (shown as a blue line) is between P2 and P3. The distance formula is shown at the top of figure 1. Your program should display all the distances calculated and display the smallest and largest distances found.
[image: image1.png]P4

Figure 1

As with any good program, the output should be legible and properly formatted so that the user can see exactly what the program accomplished.
Appendix A: Additional Resources

The Official Condor Website:

http://cs.wisc.edu/condor
Condor Tutorials:

http://www.cs.wisc.edu/condor/tutorials/
Condor Example Submit Description Files:

http://www.cs.wisc.edu/condor/quick-start.html
Another Example of Condor Submit Description Files:

http://www.cs.wisc.edu/condor/manual/v6.5/condor_submit.html
The Official Globus Documentation on GRAM for Globus Toolkit 3.2:

http://www-unix.globus.org/toolkit/docs/3.2/gram/ws/index.html
A User’s Perspective on GRAM in Globus Toolkit 3.2:

http://www-106.ibm.com/developerworks/grid/library/gr-factory/?ca=dgr-lnxw961GridMMJFS
Appendix B: Acknowledgements

1

