Assignment 1
Compiling, Deploying, and Modifying a Simple Web Service

Version 0.32 (23 August 04)

Written by Sam Daoud, Jeff House, and Mark Holliday

CS 493: Grid Computing (Fall 2004)

Instructor: Dr. Barry Wilkinson

Overview

The objective of this first assignment is to get you used to developing a simple Web Service. This assignment uses the Java 2 platform standard edition and several parts of the Apache open source project (the Apache Ant build tool, the Apache Tomcat Java servlet container, and the Apache Axis implementation of the Simple Object Access Protocol (SOAP)). This assignment will take you through the steps necessary to compile and deploy a prewritten Web service. Towards the end of the assignment, you will be required to modify the code that is given to you to help broaden your experience with developing Web services. Grid services are an extension of web services so understanding web services first is important.

Getting Started

Everyone in the class has been given an account on terra.cs.wcu.edu, which is one of the computers set up for this course. For security we limit direct access to terra; instead you will access terra from your account on the machine sol.cs.wcu.edu. If you do not have an account on sol.cs.wcu.edu yet, you should send an email to admin@cs.wcu.edu stating that you are a computer science student taking this course and that you require an account on sol. Make sure you put your full name in the email. You will get an email back with your username and a temporary password.

Once you have been notified that you have an account on sol you are ready to use it to access terra.

Step One: Logon to sol

How you connect to the machine sol.cs.wcu.edu depends on the software on the client machine that you are using. There may be specific login programs available on your client such as ssh, putty or QVTTerm. You can use those instead of the approaches described below. The approaches described below should always work.

For Windows Users:

Click Start->Run and type the following:

telnet sol.cs.wcu.edu

Click OK and Log on to sol using your username and password. One disadvantage of this approach is that telnet does not encrypt so your username and password will be sent as plaintext. If your system has an alternative program that encrypts that would be better to use.
For Linux Users:

Open a new terminal window and type the following:

ssh sol.cs.wcu.edu –l yourusername
Make sure to replace your sol username for yourusername and hit the enter key. Throughout this document wherever the word yourusername appears you should replace that word with your username for that particular machine. You will be then prompted for your password on sol. Sol does encrypt the messages sent.
Step Two: Logon to terra

Once you are logged into sol, you must then use the ssh (Secure Shell) command to logon to terra.cs.wcu.edu. Your username on terra will be given to you in class. Your username on terra will be student followed by some number. You can logon to terra by typing in the following:

ssh terra.cs.wcu.edu –l yourusername

or a slightly shorter way by typing

ssh yourusername@terra

When you are prompted for your password, enter globus. Once you have logged on the command prompt will be displayed on the command line as shown below.

[yourusername@terra yourusername]$

except that the two places where the word yourusername appears will be replaced by your username on terra. The command prompt on terra has within brackets your username with @terra appended, a space, and then the last part of the pathname of the current directory. Thus, when you login the initial command prompt is the one shown above since your initial current directory is your home directory which is /home/yourusername.

Step Three: The passwd, ls, and mkdir commands

You should change this password after your first login to help protect your work. You change your password using the passwd command. Now that you are logged on, you can use the ls command on your home directory to list the contents of that directory.

[yourusername@terra yourusername]$ ls

Your home directory should be empty initially or it may contain a directory named GridServices that will be used in a later assignment. Use the mkdir (MaKe DIRectory) command to make a subdirectory named WebServices to hold your work for this assignment.

[yourusername@terra yourusername]$ mkdir WebServices
[yourusername@terra yourusername]$ ls
WebServices

The ls command shows that the WebServices directory has been created. That directory is currently empty.

The Linux command interpreter (shell) executes what is entered on one line at the command prompt. That one line usually (and always in this assignment) has just one command. The problem is that sometimes that one command is longer than the width of the console screen or of the width of a document page. There are two solutions that the command interpreter supports. One solution is that since a line is defined as all the characters until a newline character, the shell can handle a command that is so long that it wraps around on the console to the next line as long as the user does not enter a newline character. The second solution is that the shell views a backspace character, “\”, as escaping the next character. Thus, a backspace character immediately before a newline character is not considered to be the start of a new line by the shell.
In this handout whenever a command is long it will be shown on multiple lines but with a backspace character at the end of each line except the last line. It is important when entering a command in this manner that the newline character (generated by pressing the ENTER key) be immediately after the backspace character.

Assignment Specifics

We will:

· Create Web service source code as a jws (Java Web Service) file.

· Generate several Java source files representing the service from that jws file using the Axis tool
· Compile the files created in the previous step
· Create client source and compile

· Execute client to access the service.

· Extend the service by adding functionality

The Web Service for this assignment is a simple Math Service that can perform an arithmetic operation (returning the square of its argument) for a client, The Math Service itself is not stateful, meaning that the result of any previous arithmetic operation is not remembered by the service. In the next assignment we will consider a stateful Grid service.

Step 1: Defining the service with java.

The first part of step one is to make the just created WebServices directory your current directory by using the cd (Change Directory) command. Assuming that you are in your home directory, enter the command:

[yourusername@terra yourusername]$ cd WebServices
[yourusername@terra WebServices]$ ls
[yourusername@terra WebServices]$

The ls command shows that currently there are no files in your WebServices directory. Now use your favorite editor to create a file named MyMath.jws (Java Web Service) in the current directory. Editors available on terra include pico, vi, and emacs. The pico editor is simple to use with all the editing commands shown at the bottom of the window. The file MyMath.jws contains the Java code that implements the Math Service. This Java code is given below:

public class MyMath
{

 public int squared(int x)
 {

 return x * x;

 }

}

Part of the Apache open source project is support for web services, http://ws.apache.org/. That support includes the Axis tool, http://ws.apache.org/axis/. Axis is an implementation of the Simple Object Access Protocol (SOAP) which is a key protocol in web services. As part of supporting SOAP Axis includes a program called WSDL2Java that will accept a Java source file that contains a Java class that implements a service and will generate the Java source files needed to make that Java class into a web service. The input Java source file must have the extension jws to indicate that the Java source is intended to be a Java Web Service.

Axis expects the jws file to be in one of several standard locations. To support that requirement we have created another directory for you that is at $CATALINA_HOME/webapps/axis/yourusername/. CATALINA_HOME is the environment variable specifying the path to the home directory of the Apache Tomcat java servlet container. You can see the value of this environment variable by using the following command.

[yourusername@terra WebServices]$ printenv CATALINA_HOME

/usr/local/jakarta-tomcat-5.0.25

[yourusername@terra WebServices]$

You can see the directory that has been created for you and that it is currently empty by the following command.

[yourusername@terra WebServices]$ ls $CATALINA_HOME/webapps/axis/yourusername/

[yourusername@terra WebServices]$

Copy the jws file to the directory we just listed so that Axis will be able to find the file. Copy the file with the following command.
[yourusername@terra WebServices]$cp MyMath.jws \

$CATALINA_HOME/webapps/axis/yourusername/

The backspace character is because the command is on more than one line. Each backspace character must immediately precede a newline character. You can see that the file has been copied by doing the following command.

[yourusername@terra WebServices]$ ls $CATALINA_HOME/webapps/axis/yourusername/

MyMath.jws

[yourusername@terra WebServices]$

Step 2: Create the Java source files needed for a web service

The second step in developing a Web Service is defining the interface for the service. The interface is defined using the Web Service Description Language (WSDL), http://www.w3.org/TR/wsdl, which specifies what operations are exposed through the Web Service to clients. Axis (http://ws.apache.org/axis/) is an implementation of the Simple Object Access Protocol (SOAP). Use Axis tool WSDL2Java to generate the Java source files needed to implement a web service from the MyMath.jws file that you created in step one. While you are still in the directory /home/yourusername/WebServices/ this automatic generation is done with the command:

[yourusername@terra WebServices]$ java –classpath \

$AXISCLASSPATH org.apache.axis.wsdl.WSDL2Java \
http://localhost:8080/axis/yourusername/MyMath.jws?wsdl

The command is shown on two lines, but all commands must be entered all on one line unless the newline character is escaped by the backslash character, “\”. The Axis WSDL2Java program finds the MyMath.jws file and creates the needed Java source files. The second argument is a URL (Universal Resource Location) specifying the web server that is listening on TCP port 8080 on the local machine. On terra the Apache tomcat web server is running and listening on that port.
The result of executing the WSDL2Java program is to create in the current directory, /home/yourusername/WebServices, a directory named localhost. You can use the ls command to see this. The localhost directory has a subdirectory named axis which has a subdirectory named yourusername which has a subdirectory named MyMath_jws. This series of directories was created because it follows the parts of the URL http://localhost:8080/axis/yourusername/MyMath.jws?wsdl. The directory MyMath_jws that has four files in it.

· MyMath.java: source for Java interface for MyMath class

· MyMathService.java: source for Java interface that includes the getMyMath method specification

· MyMathServiceLocator.java: source for Java class MyMathServiceLocator

· MyMathSoapBindingStub.java: source for Java class MyMathSoapBindingStub

These files are the Java source files created by WSDL2Java and are needed to make MyMath into a web service.

The command invoking WSDL2Java could instead have been written as:

[yourusername@terra WebServices]$ java -classpath $AXISCLASSPATH \

org.apache.axis.wsdl.WSDL2Java \
http://terra.cs.wcu.edu:8080/axis/yourusername/MyMath.jws?wsdl

The backspace characters are because the command is on more than one line. Each backspace character must immediately precede a newline character.

The difference is that the Fully Qualified Domain Name of the current machine, terra.cs.wcu.edu, is being used instead of the term localhost. The only difference in the output is that the directory created in the current directory is not named localhost. Instead it is named edu and has a subdirectory name wcu that has a subdirectory named cs that has a subdirectory named terra. The subdirectory named terra has a subdirectory named axis just as the subdirectory named localhost has a subdirectory named axis.
Step 3: Compile Java Source Files Just Generated
While you are still in the directory /home/yourusername/WebServices/ compile the four Java source files generated by step two with the command:

[yourusername@terra WebServices]$ javac -classpath $AXISCLASSPATH \

localhost/axis/yourusername/MyMath_jws/*.java

or the command

[yourusername@terra WebServices]$ javac -classpath $AXISCLASSPATH \

edu/wcu/cs/terra/axis/yourusername/MyMath_jws/*.java

depending on how you invoked the WSDL2Java command as described above. The backspace character is because the command is on more than one line. Each backspace character must immediately precede a newline character.

Step 4: Write Client Source

While you are still in the directory /home/yourusername/WebServices/ create a file named MyMathClient.java that contains the code for the client. The client source code that you are to place in the file MyMathClient.java is given below. The three import statements assume that you invoked the WSDL2Java program using localhost, not terra.cs.wcu.edu.
import localhost.axis.yourusername.MyMath_jws.MyMathServiceLocator;

import localhost.axis.yourusername.MyMath_jws.MyMathService;

import localhost.axis.yourusername.MyMath_jws.MyMath;

public class MyMathClient {

public static void main(String args[]) throws

Exception {

 MyMathService service = new MyMathServiceLocator();

 MyMath myMath = service.getMyMath();

 int x = (new Integer(args[0])).intValue();

 System.out.println("The square of " + args[0] +

" is " + myMath.squared(x));

 }

}

This client exercises the service by calling it to compute and return the square of the number passed as an argument.

Step 5: Compile Client Code

While you are still in the directory /home/yourusername/WebServices/ compile the client code with:

[yourusername@terra WebServices]$ javac -classpath $AXISCLASSPATH:. \

MyMathClient.java

The backspace character is because the command is on more than one line. Each backspace character must immediately precede a newline character. Be careful to ensure there is at least one space before the argument MyMathClient.java to separate it from the previous argument The previous argument, $AXISCLASSPATH:., has the :. at the end to force the java compiler to look at the current directory.
Step 6: Execute Web Service Program

While you are still in the directory /home/yourusername/WebServices/ execute client code with:

[yourusername@terra WebServices]$ java -classpath $AXISCLASSPATH:. \

MyMathClient 4

The backspace character is because the command is on more than one line. Each backspace character must immediately precede a newline character. Be careful to ensure there is at least one space before and after the argument MyMathClient to separate it from the previous and following arguments. You should get the following output:
The square of 4 is 16

Step 7: Add Functionality to the Web Service Program

In this step you are to extend the service by adding additional functionality. In particular you are to add a method named prime that returns true if the integer argument passed to it is an even number and false otherwise. To do this, the basic idea is to repeat first six steps above but adding in the extra code in the MyMath.jws and MyMathClient.java files. All the steps are to be done while you are still in the directory /home/yourusername/WebServices/

· (step one) Edit MyMath.jws to add an additional method named isEven that returns a Boolean value and has one int argument. This method should include the code to determine whether the argument is an even number.

· (step two) Copy the revised MyMath.jws file to the directory $CATALINA_HOME/webapps/axis/yourusername/

· (step three)Run the WSDL2Java Java program on your MyMath.jws file to create the Java source files needed to make MyMath a web service.

· (step four) Compile the newly created Java source files
· (step five) Revise your MyMathClient.java file which holds your client source code to include at least one call to the new isEven method of your service.

· (step six) Compile your client source file, MyMathClient.java.

· (step seven) Execute your web service by executing your client, MyMathClient.class, which will then call the service.

1. Appendix A: Additional Resources

Apache Web Services Project:

http://ws.apache.org/
Apache AXIS:

http://ws.apache.org/axis/
Apache ANT:

http://ant.apache.org/
Apache Tomcat :

http://jakarta.apache.org/
Web Service Description Language :

http://www.w3.org/TR/wsdl/
Acknowledgement

This assignment is derived from “Classroom Exercises for Grid Services” by A. Apon, J. Mache, Y. Yara, and K. Landrus, Proc. 5th Int. Conference on Linux Clusters: The HPC RevolutionMay 2004.
2

