
5.3 Polynomials and Rational Functions 173

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

Thompson, I.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490–509.
[5]

Lentz, W.J. 1976, Applied Optics, vol. 15, pp. 668–671. [6]

Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
don: Academic Press), p. 125. [7]

5.3 Polynomials and Rational Functions

A polynomial of degree N is represented numerically as a stored array of
coefficients, c[j] with j= 0, . . . , N . We will always take c[0] to be the constant
term in the polynomial, c[N] the coefficient of xN ; but of course other conventions
are possible. There are two kinds of manipulations that you can do with a polynomial:
numerical manipulations (such as evaluation), where you are given the numerical
value of its argument, or algebraic manipulations, where you want to transform
the coefficient array in some way without choosing any particular argument. Let’s
start with the numerical.

We assume that you know enough never to evaluate a polynomial this way:

p=c[0]+c[1]*x+c[2]*x*x+c[3]*x*x*x+c[4]*x*x*x*x;

or (even worse!),

p=c[0]+c[1]*x+c[2]*pow(x,2.0)+c[3]*pow(x,3.0)+c[4]*pow(x,4.0);

Come the (computer) revolution, all persons found guilty of such criminal
behavior will be summarily executed, and their programs won’t be! It is a matter
of taste, however, whether to write

p=c[0]+x*(c[1]+x*(c[2]+x*(c[3]+x*c[4])));

or

p=(((c[4]*x+c[3])*x+c[2])*x+c[1])*x+c[0];

If the number of coefficients c[0..n] is large, one writes

p=c[n];
for(j=n-1;j>=0;j--) p=p*x+c[j];

or

p=c[j=n];
while (j>0) p=p*x+c[--j];

Another useful trick is for evaluating a polynomial P (x) and its derivative
dP (x)/dx simultaneously:

p=c[n];
dp=0.0;
for(j=n-1;j>=0;j--) {dp=dp*x+p; p=p*x+c[j];}



174 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

or

p=c[j=n];
dp=0.0;
while (j>0) {dp=dp*x+p; p=p*x+c[--j];}

which yields the polynomial as p and its derivative as dp.
The above trick, which is basically synthetic division [1,2], generalizes to the

evaluation of the polynomial and nd of its derivatives simultaneously:

void ddpoly(float c[], int nc, float x, float pd[], int nd)
Given the nc+1 coefficients of a polynomial of degree nc as an array c[0..nc] with c[0]
being the constant term, and given a value x, and given a value nd>1, this routine returns the
polynomial evaluated at x as pd[0] and nd derivatives as pd[1..nd].
{

int nnd,j,i;
float cnst=1.0;

pd[0]=c[nc];
for (j=1;j<=nd;j++) pd[j]=0.0;
for (i=nc-1;i>=0;i--) {

nnd=(nd < (nc-i) ? nd : nc-i);
for (j=nnd;j>=1;j--)

pd[j]=pd[j]*x+pd[j-1];
pd[0]=pd[0]*x+c[i];

}
for (i=2;i<=nd;i++) { After the first derivative, factorial constants come in.

cnst *= i;
pd[i] *= cnst;

}
}

As a curiosity, you might be interested to know that polynomials of degree
n > 3 can be evaluated in fewer than n multiplications, at least if you are willing
to precompute some auxiliary coefficients and, in some cases, do an extra addition.
For example, the polynomial

P (x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 (5.3.1)

where a4 > 0, can be evaluated with 3 multiplications and 5 additions as follows:

P (x) = [(Ax + B)2 + Ax + C][(Ax + B)2 + D] + E (5.3.2)

where A, B, C, D, and E are to be precomputed by

A = (a4)1/4

B =
a3 − A3

4A3

D = 3B2 + 8B3 +
a1A − 2a2B

A2

C =
a2

A2
− 2B − 6B2 − D

E = a0 − B4 − B2(C + D) − CD

(5.3.3)



5.3 Polynomials and Rational Functions 175

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

Fifth degree polynomials can be evaluated in 4 multiplies and 5 adds; sixth degree
polynomials can be evaluated in 4 multiplies and 7 adds; if any of this strikes
you as interesting, consult references [3-5]. The subject has something of the same
entertaining, if impractical, flavor as that of fast matrix multiplication, discussed
in §2.11.

Turn now to algebraic manipulations. You multiply a polynomial of degree
n − 1 (array of range [0..n-1]) by a monomial factor x − a by a bit of code
like the following,

c[n]=c[n-1];
for (j=n-1;j>=1;j--) c[j]=c[j-1]-c[j]*a;
c[0] *= (-a);

Likewise, you divide a polynomial of degree n by a monomial factor x − a
(synthetic division again) using

rem=c[n];
c[n]=0.0;
for(i=n-1;i>=0;i--) {

swap=c[i];
c[i]=rem;
rem=swap+rem*a;

}

which leaves you with a new polynomial array and a numerical remainder rem.
Multiplication of two general polynomials involves straightforward summing

of the products, each involving one coefficient from each polynomial. Division of
two general polynomials, while it can be done awkwardly in the fashion taught using
pencil and paper, is susceptible to a good deal of streamlining. Witness the following
routine based on the algorithm in [3].

void poldiv(float u[], int n, float v[], int nv, float q[], float r[])
Given the n+1 coefficients of a polynomial of degree n in u[0..n], and the nv+1 coefficients
of another polynomial of degree nv in v[0..nv], divide the polynomial u by the polynomial
v (“u”/“v”) giving a quotient polynomial whose coefficients are returned in q[0..n], and a
remainder polynomial whose coefficients are returned in r[0..n]. The elements r[nv..n]
and q[n-nv+1..n] are returned as zero.
{

int k,j;

for (j=0;j<=n;j++) {
r[j]=u[j];
q[j]=0.0;

}
for (k=n-nv;k>=0;k--) {

q[k]=r[nv+k]/v[nv];
for (j=nv+k-1;j>=k;j--) r[j] -= q[k]*v[j-k];

}
for (j=nv;j<=n;j++) r[j]=0.0;

}



176 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

Rational Functions

You evaluate a rational function like

R(x) =
Pµ(x)
Qν(x)

=
p0 + p1x + · · · + pµxµ

q0 + q1x + · · · + qνxν
(5.3.4)

in the obvious way, namely as two separate polynomials followed by a divide. As
a matter of convention one usually chooses q0 = 1, obtained by dividing numerator
and denominator by any other q0. It is often convenient to have both sets of
coefficients stored in a single array, and to have a standard function available for
doing the evaluation:

double ratval(double x, double cof[], int mm, int kk)
Given mm, kk, and cof[0..mm+kk], evaluate and return the rational function (cof[0] +

cof[1]x + · · · + cof[mm]xmm)/(1 + cof[mm+1]x + · · · + cof[mm+kk]xkk).
{

int j;
double sumd,sumn; Note precision! Change to float if desired.

for (sumn=cof[mm],j=mm-1;j>=0;j--) sumn=sumn*x+cof[j];
for (sumd=0.0,j=mm+kk;j>=mm+1;j--) sumd=(sumd+cof[j])*x;
return sumn/(1.0+sumd);

}

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 183, 190. [1]

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), pp. 361–363. [2]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §4.6. [3]

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 4.

Winograd, S. 1970, Communications on Pure and Applied Mathematics, vol. 23, pp. 165–179. [4]

Kronsjö, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley). [5]

5.4 Complex Arithmetic

As we mentioned in §1.2, the lack of built-in complex arithmetic in C is a
nuisance for numerical work. Even in languages like FORTRAN that have complex
data types, it is disconcertingly common to encounter complex operations that
produce overflows or underflows when both the complex operands and the complex
result are perfectly representable. This occurs, we think, because software companies
assign inexperienced programmers to what they believe to be the perfectly trivial
task of implementing complex arithmetic.


