
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

Chapter 20. Less-Numerical
Algorithms

20.0 Introduction

You can stop reading now. You are done with Numerical Recipes, as such. This
final chapter is an idiosyncratic collection of “less-numerical recipes” which, for one
reason or another, we have decided to include between the covers of an otherwise
more-numerically oriented book. Authors of computer science texts, we’ve noticed,
like to throw in a token numerical subject (usually quite a dull one — quadrature, for
example). We find that we are not free of the reverse tendency.

Our selection of material is not completely arbitrary. One topic, Gray codes, was
already used in the construction of quasi-random sequences (§7.7), and here needs
only some additional explication. Two other topics, on diagnosing a computer’s
floating-point parameters, and on arbitrary precision arithmetic, give additional
insight into the machinery behind the casual assumption that computers are useful
for doing things with numbers (as opposed to bits or characters). The latter of these
topics also shows a very different use for Chapter 12’s fast Fourier transform.

The three other topics (checksums, Huffman and arithmetic coding) involve
different aspects of data coding, compression, and validation. If you handle a large
amount of data — numerical data, even — then a passing familiarity with these
subjects might at some point come in handy. In §13.6, for example, we already
encountered a good use for Huffman coding.

But again, you don’t have to read this chapter. (And you should learn about
quadrature from Chapters 4 and 16, not from a computer science text!)

20.1 Diagnosing Machine Parameters

A convenient fiction is that a computer’s floating-point arithmetic is “accurate
enough.” If you believe this fiction, then numerical analysis becomes a very clean
subject. Roundoff error disappears from view; many finite algorithms become
“exact”; only docile truncation error (§1.3) stands between you and a perfect
calculation. Sounds rather naive, doesn’t it?

Yes, it is naive. Notwithstanding, it is a fiction necessarily adopted throughout
most of this book. To do a good job of answering the question of how roundoff error

889

890 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

propagates, or can be bounded, for every algorithm that we have discussed would be
impractical. In fact, it would not be possible: Rigorous analysis of many practical
algorithms has never been made, by us or anyone.

Proper numerical analysts cringe when they hear a user say, “I was getting
roundoff errors with single precision, so I switched to double.” The actual meaning
is, “for this particular algorithm, and my particular data, double precision seemed
able to restore my erroneous belief in the ‘convenient fiction’.” We admit that most
of the mentions of precision or roundoff in Numerical Recipes are only slightly more
quantitative in character. That comes along with our trying to be “practical.”

It is important to know what the limitations of your machine’s floating-point
arithmetic actually are — the more so when your treatment of floating-point roundoff
error is going to be intuitive, experimental, or casual. Methods for determining
useful floating-point parameters experimentally have been developed by Cody [1],
Malcolm [2], and others, and are embodied in the routine machar, below, which
follows Cody’s implementation.

All of machar’s arguments are returned values. Here is what they mean:
• ibeta (called B in §1.3) is the radix in which numbers are represented,

almost always 2, but occasionally 16, or even 10.
• it is the number of base-ibeta digits in the floating-point mantissa M

(see Figure 1.3.1).
• machep is the exponent of the smallest (most negative) power of ibeta

that, added to 1.0, gives something different from 1.0.
• eps is the floating-point number ibetamachep, loosely referred to as the

“floating-point precision.”
• negep is the exponent of the smallest power of ibeta that, subtracted

from 1.0, gives something different from 1.0.
• epsneg is ibetanegep, another way of defining floating-point precision.

Not infrequently epsneg is 0.5 times eps; occasionally eps and epsneg
are equal.

• iexp is the number of bits in the exponent (including its sign or bias).
• minexp is the smallest (most negative) power of ibeta consistent with

there being no leading zeros in the mantissa.
• xmin is the floating-point number ibetaminexp, generally the smallest

(in magnitude) useable floating value.
• maxexp is the smallest (positive) power of ibeta that causes overflow.
• xmax is (1−epsneg)×ibetamaxexp, generally the largest (in magnitude)

useable floating value.
• irnd returns a code in the range 0 . . . 5, giving information on what kind of

rounding is done in addition, and on how underflow is handled. See below.
• ngrd is the number of “guard digits” used when truncating the product of

two mantissas to fit the representation.
There is a lot of subtlety in a program like machar, whose purpose is to ferret

out machine properties that are supposed to be transparent to the user. Further, it must
do so avoiding error conditions, like overflow and underflow, that might interrupt
its execution. In some cases the program is able to do this only by recognizing
certain characteristics of “standard” representations. For example, it recognizes
the IEEE standard representation [3] by its rounding behavior, and assumes certain
features of its exponent representation as a consequence. We refer you to [1] and

20.1 Diagnosing Machine Parameters 891

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

Sample Results Returned by machar

typical IEEE-compliant machine DEC VAX

precision single double single

ibeta 2 2 2

it 24 53 24

machep −23 −52 −24

eps 1.19 × 10−7 2.22 × 10−16 5.96 × 10−8

negep −24 −53 −24

epsneg 5.96 × 10−8 1.11 × 10−16 5.96 × 10−8

iexp 8 11 8

minexp −126 −1022 −128

xmin 1.18 × 10−38 2.23 × 10−308 2.94 × 10−39

maxexp 128 1024 127

xmax 3.40 × 1038 1.79 × 10308 1.70 × 1038

irnd 5 5 1

ngrd 0 0 0

references therein for details. Be aware that machar can give incorrect results on
some nonstandard machines.

The parameter irnd needs some additional explanation. In the IEEE standard,
bit patterns correspond to exact, “representable” numbers. The specified method
for rounding an addition is to add two representable numbers “exactly,” and then
round the sum to the closest representable number. If the sum is precisely halfway
between two representable numbers, it should be rounded to the even one (low-order
bit zero). The same behavior should hold for all the other arithmetic operations,
that is, they should be done in a manner equivalent to infinite precision, and then
rounded to the closest representable number.

If irnd returns 2 or 5, then your computer is compliant with this standard. If it
returns 1 or 4, then it is doing some kind of rounding, but not the IEEE standard. If
irnd returns 0 or 3, then it is truncating the result, not rounding it — not desirable.

The other issue addressed by irnd concerns underflow. If a floating value is
less than xmin, many computers underflow its value to zero. Values irnd = 0, 1,
or 2 indicate this behavior. The IEEE standard specifies a more graceful kind of
underflow: As a value becomes smaller than xmin, its exponent is frozen at the
smallest allowed value, while its mantissa is decreased, acquiring leading zeros and
“gracefully” losing precision. This is indicated by irnd = 3, 4, or 5.

892 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

#include <math.h>
#define CONV(i) ((float)(i))
Change float to double here and in declarations below to find double precision parameters.

void machar(int *ibeta, int *it, int *irnd, int *ngrd, int *machep, int *negep,
int *iexp, int *minexp, int *maxexp, float *eps, float *epsneg,
float *xmin, float *xmax)

Determines and returns machine-specific parameters affecting floating-point arithmetic. Re-
turned values include ibeta, the floating-point radix; it, the number of base-ibeta digits in
the floating-point mantissa; eps, the smallest positive number that, added to 1.0, is not equal
to 1.0; epsneg, the smallest positive number that, subtracted from 1.0, is not equal to 1.0;
xmin, the smallest representable positive number; and xmax, the largest representable positive
number. See text for description of other returned parameters.
{

int i,itemp,iz,j,k,mx,nxres;
float a,b,beta,betah,betain,one,t,temp,temp1,tempa,two,y,z,zero;

one=CONV(1);
two=one+one;
zero=one-one;
a=one; Determine ibeta and beta by the method of M.

Malcolm.do {
a += a;
temp=a+one;
temp1=temp-a;

} while (temp1-one == zero);
b=one;
do {

b += b;
temp=a+b;
itemp=(int)(temp-a);

} while (itemp == 0);
*ibeta=itemp;
beta=CONV(*ibeta);
*it=0; Determine it and irnd.
b=one;
do {

++(*it);
b *= beta;
temp=b+one;
temp1=temp-b;

} while (temp1-one == zero);
*irnd=0;
betah=beta/two;
temp=a+betah;
if (temp-a != zero) *irnd=1;
tempa=a+beta;
temp=tempa+betah;
if (*irnd == 0 && temp-tempa != zero) *irnd=2;
*negep=(*it)+3; Determine negep and epsneg.
betain=one/beta;
a=one;
for (i=1;i<=(*negep);i++) a *= betain;
b=a;
for (;;) {

temp=one-a;
if (temp-one != zero) break;
a *= beta;
--(*negep);

}
*negep = -(*negep);
*epsneg=a;
*machep = -(*it)-3; Determine machep and eps.
a=b;

20.1 Diagnosing Machine Parameters 893

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

for (;;) {
temp=one+a;
if (temp-one != zero) break;
a *= beta;
++(*machep);

}
*eps=a;
*ngrd=0; Determine ngrd.
temp=one+(*eps);
if (*irnd == 0 && temp*one-one != zero) *ngrd=1;
i=0; Determine iexp.
k=1;
z=betain;
t=one+(*eps);
nxres=0;
for (;;) { Loop until an underflow occurs, then exit.

y=z;
z=y*y;
a=z*one; Check here for the underflow.
temp=z*t;
if (a+a == zero || fabs(z) >= y) break;
temp1=temp*betain;
if (temp1*beta == z) break;
++i;
k += k;

}
if (*ibeta != 10) {

*iexp=i+1;
mx=k+k;

} else { For decimal machines only.
*iexp=2;
iz=(*ibeta);
while (k >= iz) {

iz *= *ibeta;
++(*iexp);

}
mx=iz+iz-1;

}
for (;;) { To determine minexp and xmin, loop until an

underflow occurs, then exit.*xmin=y;
y *= betain;
a=y*one; Check here for the underflow.
temp=y*t;
if (a+a != zero && fabs(y) < *xmin) {

++k;
temp1=temp*betain;
if (temp1*beta == y && temp != y) {

nxres=3;
*xmin=y;
break;

}
}
else break;

}
*minexp = -k; Determine maxexp, xmax.
if (mx <= k+k-3 && *ibeta != 10) {

mx += mx;
++(*iexp);

}
*maxexp=mx+(*minexp);
*irnd += nxres; Adjust irnd to reflect partial underflow.
if (*irnd >= 2) *maxexp -= 2; Adjust for IEEE-style machines.
i=(*maxexp)+(*minexp);
Adjust for machines with implicit leading bit in binary mantissa, and machines with radix

894 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

point at extreme right of mantissa.
if (*ibeta == 2 && !i) --(*maxexp);
if (i > 20) --(*maxexp);
if (a != y) *maxexp -= 2;
*xmax=one-(*epsneg);
if ((*xmax)*one != *xmax) *xmax=one-beta*(*epsneg);
*xmax /= (*xmin*beta*beta*beta);
i=(*maxexp)+(*minexp)+3;
for (j=1;j<=i;j++) {

if (*ibeta == 2) *xmax += *xmax;
else *xmax *= beta;

}
}

Some typical values returned by machar are given in the table, above. IEEE-
compliant machines referred to in the table include most UNIX workstations (SUN,
DEC, MIPS), and Apple Macintosh IIs. IBM PCs with floating co-processors
are generally IEEE-compliant, except that some compilers underflow intermediate
results ungracefully, yielding irnd = 2 rather than 5. Notice, as in the case of a VAX
(fourth column), that representations with a “phantom” leading 1 bit in the mantissa
achieve a smaller eps for the same wordlength, but cannot underflow gracefully.

CITED REFERENCES AND FURTHER READING:

Goldberg, D. 1991, ACM Computing Surveys, vol. 23, pp. 5–48.

Cody, W.J. 1988, ACM Transactions on Mathematical Software, vol. 14, pp. 303–311. [1]

Malcolm, M.A. 1972, Communications of the ACM, vol. 15, pp. 949–951. [2]

IEEE Standard for Binary Floating-Point Numbers, ANSI/IEEE Std 754–1985 (New York: IEEE,
1985). [3]

20.2 Gray Codes

A Gray code is a function G(i) of the integers i, that for each integer N ≥ 0
is one-to-one for 0 ≤ i ≤ 2N − 1, and that has the following remarkable property:
The binary representation of G(i) and G(i+1) differ in exactly one bit. An example
of a Gray code (in fact, the most commonly used one) is the sequence 0000, 0001,
0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001,
and 1000, for i = 0, . . . , 15. The algorithm for generating this code is simply to
form the bitwise exclusive-or (XOR) of i with i/2 (integer part). Think about how
the carries work when you add one to a number in binary, and you will be able to see
why this works. You will also see that G(i) and G(i + 1) differ in the bit position of
the rightmost zero bit of i (prefixing a leading zero if necessary).

The spelling is “Gray,” not “gray”: The codes are named after one Frank Gray,
who first patented the idea for use in shaft encoders. A shaft encoder is a wheel with
concentric coded stripes each of which is “read” by a fixed conducting brush. The
idea is to generate a binary code describing the angle of the wheel. The obvious,
but wrong, way to build a shaft encoder is to have one stripe (the innermost, say)
conducting on half the wheel, but insulating on the other half; the next stripe is
conducting in quadrants 1 and 3; the next stripe is conducting in octants 1, 3, 5,

