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14.8 Savitzky-Golay Smoothing Filters

In §13.5 we learned something about the construction and application of digital filters,
but little guidance was given on which particular filter to use. That, of course, depends
on what you want to accomplish by filtering. One obvious use for low-pass filters is to
smooth noisy data.

The premise of data smoothing is that one is measuring a variable that is both slowly
varying and also corrupted by random noise. Then it can sometimes be useful to replace
each data point by some kind of local average of surrounding data points. Since nearby
points measure very nearly the same underlying value, averaging can reduce the level of noise
without (much) biasing the value obtained.

We must comment editorially that the smoothing of data lies in a murky area, beyond
the fringe of some better posed, and therefore more highly recommended, techniques that are
discussed elsewhere in this book. If you are fitting data to a parametric model, for example
(see Chapter 15), it is almost always better to use raw data than to use data that has been
pre-processed by a smoothing procedure. Another alternative to blind smoothing is so-called
“optimal” or Wiener filtering, as discussed in §13.3 and more generally in §13.6. Data
smoothing is probably most justified when it is used simply as a graphical technique, to guide
the eye through a forest of data points all with large error bars; or as a means of making initial
rough estimates of simple parameters from a graph.

In this section we discuss a particular type of low-pass filter, well-adapted for data
smoothing, and termed variously Savitzky-Golay [1], least-squares [2], or DISPO (Digital
Smoothing Polynomial) [3] filters. Rather than having their properties defined in the Fourier
domain, and then translated to the time domain, Savitzky-Golay filters derive directly from
a particular formulation of the data smoothing problem in the time domain, as we will now
see. Savitzky-Golay filters were initially (and are still often) used to render visible the relative
widths and heights of spectral lines in noisy spectrometric data.

Recall that a digital filter is applied to a series of equally spaced data values fi ≡ f(ti),
where ti ≡ t0 + i∆ for some constant sample spacing ∆ and i = . . . − 2,−1, 0, 1, 2, . . . .
We have seen (§13.5) that the simplest type of digital filter (the nonrecursive or finite impulse
response filter) replaces each data value fi by a linear combination gi of itself and some
number of nearby neighbors,

gi =

nR∑
n=−nL

cnfi+n (14.8.1)

Here nL is the number of points used “to the left” of a data point i, i.e., earlier than it, while
nR is the number used to the right, i.e., later. A so-called causal filter would have nR = 0.

As a starting point for understanding Savitzky-Golay filters, consider the simplest
possible averaging procedure: For some fixed nL = nR, compute each gi as the average of
the data points from fi−nL to fi+nR . This is sometimes called moving window averaging
and corresponds to equation (14.8.1) with constant cn = 1/(nL + nR + 1). If the underlying
function is constant, or is changing linearly with time (increasing or decreasing), then no
bias is introduced into the result. Higher points at one end of the averaging interval are on
the average balanced by lower points at the other end. A bias is introduced, however, if
the underlying function has a nonzero second derivative. At a local maximum, for example,
moving window averaging always reduces the function value. In the spectrometric application,
a narrow spectral line has its height reduced and its width increased. Since these parameters
are themselves of physical interest, the bias introduced is distinctly undesirable.

Note, however, that moving window averaging does preserve the area under a spectral
line, which is its zeroth moment, and also (if the window is symmetric with nL = nR) its
mean position in time, which is its first moment. What is violated is the second moment,
equivalent to the line width.

The idea of Savitzky-Golay filtering is to find filter coefficients cn that preserve higher
moments. Equivalently, the idea is to approximate the underlying function within the moving
window not by a constant (whose estimate is the average), but by a polynomial of higher
order, typically quadratic or quartic: For each point fi, we least-squares fit a polynomial to all
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M nL nR Sample Savitzky-Golay Coefficients

2 2 2 −0.086 0.343 0.486 0.343 −0.086

2 3 1 −0.143 0.171 0.343 0.371 0.257

2 4 0 0.086 −0.143 −0.086 0.257 0.886

2 5 5 −0.084 0.021 0.103 0.161 0.196 0.207 0.196 0.161 0.103 0.021 −0.084

4 4 4 0.035 −0.128 0.070 0.315 0.417 0.315 0.070 −0.128 0.035

4 5 5 0.042 −0.105 −0.023 0.140 0.280 0.333 0.280 0.140 −0.023 −0.105 0.042

nL + nR + 1 points in the moving window, and then set gi to be the value of that polynomial
at position i. (If you are not familiar with least-squares fitting, you might want to look ahead
to Chapter 15.) We make no use of the value of the polynomial at any other point. When we
move on to the next point fi+1, we do a whole new least-squares fit using a shifted window.

All these least-squares fits would be laborious if done as described. Luckily, since the
process of least-squares fitting involves only a linear matrix inversion, the coefficients of a
fitted polynomial are themselves linear in the values of the data. That means that we can do
all the fitting in advance, for fictitious data consisting of all zeros except for a single 1, and
then do the fits on the real data just by taking linear combinations. This is the key point, then:
There are particular sets of filter coefficients cn for which equation (14.8.1) “automatically”
accomplishes the process of polynomial least-squares fitting inside a moving window.

To derive such coefficients, consider how g0 might be obtained: We want to fit a
polynomial of degree M in i, namely a0 + a1i + · · · + aM iM to the values f−nL , . . . , fnR .
Then g0 will be the value of that polynomial at i = 0, namely a0. The design matrix for
this problem (§15.4) is

Aij = ij i = −nL, . . . , nR, j = 0, . . . , M (14.8.2)

and the normal equations for the vector of aj ’s in terms of the vector of fi’s is in matrix notation

(AT · A) · a = AT · f or a = (AT · A)−1 · (AT · f) (14.8.3)

We also have the specific forms

{
AT · A

}
ij

=

nR∑
k=−nL

AkiAkj =

nR∑
k=−nL

ki+j (14.8.4)

and
{

AT · f
}

j
=

nR∑
k=−nL

Akjfk =

nR∑
k=−nL

kjfk (14.8.5)

Since the coefficient cn is the component a0 when f is replaced by the unit vector en,
−nL ≤ n < nR, we have

cn =
{
(AT · A)−1 · (AT · en)

}
0

=

M∑
m=0

{
(AT · A)−1

}
0m

nm (14.8.6)

Note that equation (14.8.6) says that we need only one row of the inverse matrix. (Numerically
we can get this by LU decomposition with only a single backsubstitution.)

The function savgol, below, implements equation (14.8.6). As input, it takes the
parameters nl = nL, nr = nR, and m = M (the desired order). Also input is np, the
physical length of the output array c, and a parameter ld which for data fitting should be
zero. In fact, ld specifies which coefficient among the ai’s should be returned, and we are
here interested in a0. For another purpose, namely the computation of numerical derivatives
(already mentioned in §5.7) the useful choice is ld ≥ 1. With ld = 1, for example, the
filtered first derivative is the convolution (14.8.1) divided by the stepsize ∆. For ld = k > 1,
the array c must be multiplied by k! to give derivative coefficients. For derivatives, one
usually wants m = 4 or larger.
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#include <math.h>
#include "nrutil.h"

void savgol(float c[], int np, int nl, int nr, int ld, int m)
Returns in c[1..np], in wrap-around order (N.B.!) consistent with the argument respns in
routine convlv, a set of Savitzky-Golay filter coefficients. nl is the number of leftward (past)
data points used, while nr is the number of rightward (future) data points, making the total
number of data points used nl+ nr+ 1. ld is the order of the derivative desired (e.g., ld = 0
for smoothed function). m is the order of the smoothing polynomial, also equal to the highest
conserved moment; usual values are m = 2 or m = 4.
{

void lubksb(float **a, int n, int *indx, float b[]);
void ludcmp(float **a, int n, int *indx, float *d);
int imj,ipj,j,k,kk,mm,*indx;
float d,fac,sum,**a,*b;

if (np < nl+nr+1 || nl < 0 || nr < 0 || ld > m || nl+nr < m)
nrerror("bad args in savgol");
indx=ivector(1,m+1);
a=matrix(1,m+1,1,m+1);
b=vector(1,m+1);
for (ipj=0;ipj<=(m << 1);ipj++) { Set up the normal equations of the desired

least-squares fit.sum=(ipj ? 0.0 : 1.0);
for (k=1;k<=nr;k++) sum += pow((double)k,(double)ipj);
for (k=1;k<=nl;k++) sum += pow((double)-k,(double)ipj);
mm=IMIN(ipj,2*m-ipj);
for (imj = -mm;imj<=mm;imj+=2) a[1+(ipj+imj)/2][1+(ipj-imj)/2]=sum;

}
ludcmp(a,m+1,indx,&d); Solve them: LU decomposition.
for (j=1;j<=m+1;j++) b[j]=0.0;
b[ld+1]=1.0;
Right-hand side vector is unit vector, depending on which derivative we want.
lubksb(a,m+1,indx,b); Get one row of the inverse matrix.
for (kk=1;kk<=np;kk++) c[kk]=0.0; Zero the output array (it may be bigger than

number of coefficients).for (k = -nl;k<=nr;k++) {
sum=b[1]; Each Savitzky-Golay coefficient is the dot

product of powers of an integer with the
inverse matrix row.

fac=1.0;
for (mm=1;mm<=m;mm++) sum += b[mm+1]*(fac *= k);
kk=((np-k) % np)+1; Store in wrap-around order.
c[kk]=sum;

}
free_vector(b,1,m+1);
free_matrix(a,1,m+1,1,m+1);
free_ivector(indx,1,m+1);

}

As output, savgol returns the coefficients cn, for −nL ≤ n ≤ nR. These are stored in
c in “wrap-around order”; that is, c0 is in c[1], c−1 is in c[2], and so on for further negative
indices. The value c1 is stored in c[np], c2 in c[np-1], and so on for positive indices. This
order may seem arcane, but it is the natural one where causal filters have nonzero coefficients
in low array elements of c. It is also the order required by the function convlv in §13.1,
which can be used to apply the digital filter to a data set.

The accompanying table shows some typical output from savgol. For orders 2 and
4, the coefficients of Savitzky-Golay filters with several choices of nL and nR are shown.
The central column is the coefficient applied to the data fi in obtaining the smoothed gi.
Coefficients to the left are applied to earlier data; to the right, to later. The coefficients
always add (within roundoff error) to unity. One sees that, as befits a smoothing operator,
the coefficients always have a central positive lobe, but with smaller, outlying corrections of
both positive and negative sign. In practice, the Savitzky-Golay filters are most useful for
much larger values of nL and nR, since these few-point formulas can accomplish only a
relatively small amount of smoothing.

Figure 14.8.1 shows a numerical experiment using a 33 point smoothing filter, that is,
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Figure 14.8.1. Top: Synthetic noisy data consisting of a sequence of progressively narrower bumps,
and additive Gaussian white noise. Center: Result of smoothing the data by a simple moving window
average. The window extends 16 points leftward and rightward, for a total of 33 points. Note that narrow
features are broadened and suffer corresponding loss of amplitude. The dotted curve is the underlying
function used to generate the synthetic data. Bottom: Result of smoothing the data by a Savitzky-Golay
smoothing filter (of degree 4) using the same 33 points. While there is less smoothing of the broadest
feature, narrower features have their heights and widths preserved.

nL = nR = 16. The upper panel shows a test function, constructed to have six “bumps” of
varying widths, all of height 8 units. To this function Gaussian white noise of unit variance
has been added. (The test function without noise is shown as the dotted curves in the center
and lower panels.) The widths of the bumps (full width at half of maximum, or FWHM) are
140, 43, 24, 17, 13, and 10, respectively.

The middle panel of Figure 14.8.1 shows the result of smoothing by a moving window
average. One sees that the window of width 33 does quite a nice job of smoothing the broadest
bump, but that the narrower bumps suffer considerable loss of height and increase of width.
The underlying signal (dotted) is very badly represented.

The lower panel shows the result of smoothing with a Savitzky-Golay filter of the
identical width, and degree M = 4. One sees that the heights and widths of the bumps are
quite extraordinarily preserved. A trade-off is that the broadest bump is less smoothed. That
is because the central positive lobe of the Savitzky-Golay filter coefficients fills only a fraction
of the full 33 point width. As a rough guideline, best results are obtained when the full width
of the degree 4 Savitzky-Golay filter is between 1 and 2 times the FWHM of desired features
in the data. (References [3] and [4] give additional practical hints.)

Figure 14.8.2 shows the result of smoothing the same noisy “data” with broader
Savitzky-Golay filters of 3 different orders. Here we have nL = nR = 32 (65 point filter)
and M = 2, 4, 6. One sees that, when the bumps are too narrow with respect to the filter
size, then even the Savitzky-Golay filter must at some point give out. The higher order filter
manages to track narrower features, but at the cost of less smoothing on broad features.

To summarize: Within limits, Savitzky-Golay filtering does manage to provide smoothing
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Figure 14.8.2. Result of applying wider 65 point Savitzky-Golay filters to the same data set as in Figure
14.8.1. Top: degree 2. Center: degree 4. Bottom: degree 6. All of these filters are inoptimally broad
for the resolution of the narrow features. Higher-order filters do best at preserving feature heights and
widths, but do less smoothing on broader features.

without loss of resolution. It does this by assuming that relatively distant data points have
some significant redundancy that can be used to reduce the level of noise. The specific nature
of the assumed redundancy is that the underlying function should be locally well-fitted by a
polynomial. When this is true, as it is for smooth line profiles not too much narrower than
the filter width, then the performance of Savitzky-Golay filters can be spectacular. When it
is not true, then these filters have no compelling advantage over other classes of smoothing
filter coefficients.

A last remark concerns irregularly sampled data, where the values fi are not uniformly
spaced in time. The obvious generalization of Savitzky-Golay filtering would be to do a
least-squares fit within a moving window around each data point, one containing a fixed
number of data points to the left (nL) and right (nR). Because of the irregular spacing,
however, there is no way to obtain universal filter coefficients applicable to more than one
data point. One must instead do the actual least-squares fits for each data point. This becomes
computationally burdensome for larger nL, nR, and M .

As a cheap alternative, one can simply pretend that the data points are equally spaced.
This amounts to virtually shifting, within each moving window, the data points to equally
spaced positions. Such a shift introduces the equivalent of an additional source of noise
into the function values. In those cases where smoothing is useful, this noise will often be
much smaller than the noise already present. Specifically, if the location of the points is
approximately random within the window, then a rough criterion is this: If the change in f

across the full width of the N = nL + nR + 1 point window is less than
√

N/2 times the
measurement noise on a single point, then the cheap method can be used.
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