
A
P
P
E
N
D
I
X

A

The JASP Toolkit

A.1 Introducing JASP

The JASP toolkit is based around the design of a simple processor named
JASP - Just Another Simulated Processor. A diagram of this processor is
shown in figure A.1.

The original JASP design was by William Henderson of the School of
Informatics, Northumbria University.

JASP consists of a small set of registers, a microcoded control unit and
an ALU. This processor is connected to a memory to form a rudimentary
computer system.

JASP is deliberately meant to be simple technology - containing the simplest
elements from a microcoded processor. JASP is designed as an educational
tool to demonstrate fundamental concepts in a generic way, so allowing stu-
dents to gain an understanding of them prior to transferring to ‘real world’
processors.

Within the toolkit we have two simulations of the JASP processor, the main one
being JASPer (Just Another Simulated Processor emulator), the second being
Aspen (Another Simulated Processor emulation). The toolkit also contains an
assortment of useful tools to aid the use of the processor simulators.

The set of tools includes:

I JASPer - the main simulated processor, JASPer will run on Windows 95
and above;

I Aspen - a command-line version of JASPer that can be used with DOS or
Linux;

I The JASP cross-assembler - a cross-assembler, written in Perl, that as-
sembles programs for the JASP architecture. The assembler should work
on any platform with a Perl installation, but it has been tested under DOS
and Linux only;

315

Fundamentals of Computer Architecture

I The JASP C−− cross-compiler - a cross-compiler for the JASP architec-
ture. It can be used with DOS or Linux;

I The basic and advanced JASP instruction sets;

I Two software libraries, for use with each instruction set.

A reference to the functionality of the JASP processor is given below, followed
by descriptions of each tool in the toolkit.

ALU
Control
Unit

Processor

MAR

MDR

A

B

ALUx ALUy

ALUr

IR

SP

INC

PC

PSR

Figure A.1 The JASP processor

A.1.1 Obtaining The JASP Toolkit

All the tools within the JASP toolkit are copyright Mark Burrell, except for the
C−− cross-compiler which is copyright David Harrison.

316

The JASP Toolkit

The authors of this toolkit, and the distributors, cannot accept responsibility
for any disruption, damage and/or loss to your data or computer system that
may occur while using this package. This is free software and comes with no
warranty.

To obtain a copy of the JASP toolkit go to this website:

I http://www.palgrave.com/science/computing/burrell/

Additionally, a copy of the JASP toolkit is available on the accompanying CD.

While the authors hold copyright on all JASP executables and documentation,
it may be freely distributed at no cost (excluding minimal expenses), providing
that it is distributed intact, and not subsumed into any other work.

A.1.2 Installing The JASP Toolkit

The JASP toolkit has various tools, some of which work in Microsoft Win-
dows, while others work on Linux systems. The installation instructions for
each environment are given below.

Refer to the readme.txt file within the toolkit for a detailed description of each
file, and how it can be used.

Installing On Windows

The JASP toolkit is distributed as a zipped archive, and you need to unzip this
archive into a directory on your computer. None of the JASP tools make use
of the Windows registry, and so no further installation is necessary, apart from
you may set up any desktop icons or menu options as you prefer.

You can additionally set up an environment variable called JASP, and update
your path as listed below - but this is only really required if you intend to make
use of the JASP assembler or Aspen.

If you do wish to update your path and use the JASP environment variable
then place the following lines in your autoexec.bat file (this assumes you
have installed the JASP toolkit at the location c:\jasp\):

set path=%path%;c:\jasp\

set JASP=c:\jasp\

317

Fundamentals of Computer Architecture

Installing on Linux

Once again, unzip the archive into a directory on your computer - something
like ~/jasp.

As all the tools for Linux are command-line driven, it makes sense to set up the
path and the JASP environment. You may need to do this differently, depending
on your flavour of Linux, but on my system, using the bash shell, all I need to
do is update .bash profile with:

PATH="$PATH:~/jasp/"

export JASP=~/jasp/

Additionally, to make the assembler work successfully, you will need to ensure
that the first line of the jasm.pl program uses the correct location for Perl on
your system. You may also want to set up a logical file to point to the jasm.pl

like this:

cd $JASP

ln -s jasm.pl jasm

A.2 The JASP Processor - A Reference

This section covers:

I A description of the function of each register;

I The micro-instructions understood by the JASP control unit;

I A description of the memory map, including a description of the memory-
mapped peripherals;

I The interrupt mechanism;

I The file formats used by JASP for both instruction sets and machine code.

A.2.1 Registers

The processor registers are listed in table A.1.

318

The JASP Toolkit

Register Width (bits) Description
PC 16 Program counter - is used to keep track of the memory address

storing the next instruction to be executed
INC 16 Incrementer - is used to add one to the value held in the PC,

something that needs to occur very often in most programs. Using
the incrementer (effectively as a specialist register) is faster than
using the ALU for this particular task, and importantly does not
affect the PSR flags

A 16 General Register A - is the first of two general purpose regis-
ters, programmers can use the general purpose registers to store
program bit patterns

B 16 General Register B - is the second of the two general purpose
registers

MAR 16 Memory Address Register - is used as a specialist register to store
the address of the memory location that we need to read from or
write to

MDR 16 Memory Data Register - is used as a specialist register to store
the data that we have just read from memory or need to write to
memory

IR 16 Instruction Register - is the specialist register where we store the
instruction once it has been fetched from memory

ALUx 16 Arithmetic Logic Unit X Register is the first of two specialist
registers where we store bit patterns to be used in ALU operations

ALUy 16 Arithmetic Logic Unit Y Register is the second of two specialist
registers where we store bit patterns to be used in ALU operations

ALUr 16 Arithmetic Logic Unit Result Register is the specialist register
where the result from an ALU operation is stored

SP 16 Stack Pointer - is the specialist register used to store the address
of the top of the stack held in memory

PSR 16 Processor Status Register - is where we store information about
the state of the processor, including the state of the last ALU
operation

Table A.1 Processor registers

A.2.2 Micro-Instructions

The JASP processor has a micro-programmed control unit, where each ma-
chine code instruction is defined as a sequence of micro-instructions known
as a micro-program. These micro-programs are used by the control unit to
execute individual instructions.

These micro-programs can be grouped together in an instruction set file,
sometimes referred to as a microcode file. Two instruction set are distributed

319

Fundamentals of Computer Architecture

with the JASP toolkit, and it is a simple process to define and use new
instructions.

All the micro-instructions that are recognized by the processor can be
separated into one of four distinct micro-instruction groups. These are:

I Data movement micro-instructions;

I ALU micro-instructions;

I Test micro-instructions;

I Processor control micro-instructions.

All the micro-instructions within each group are described below.

Data Movement Micro-Instructions

There are over forty data movements, as listed in tables A.2 and A.3.

RTL Notes
A←[MDR]
A←[ALUr]
A←[IR(operand)] 8-bit transfer, hi-byte of result = 0x00
B←[MDR]
B←[ALUr]
B←[IR(operand)] 8-bit transfer, hi-byte of result = 0x00
B←[PC]
PC←[IR(operand)] 8-bit transfer, hi-byte of result = 0x00
PC←[ALUr]
PC←[B]
PC←[MDR]
PC←[INC]
INC←[PC]
ALUx←[MDR]
ALUx←[A]
ALUx←[B]
ALUx←[IR(operand)] 8-bit transfer, value is sign-extended

Table A.2 Data movement micro-instructions

320

The JASP Toolkit

RTL Notes
ALUx←[PC]
ALUx←[ALUr]
ALUx←[SP]
ALUy←[A]
ALUy←[B]
ALUy←[MDR]
ALUy←[IR(operand)] 8-bit transfer, value is sign-extended
MAR←[PC]
MAR←[IR(operand)] 8-bit transfer, hi-byte of result = 0x00
MAR←[ALUr]
MAR←[A]
MAR←[B]
MAR←[SP]
MAR←[MDR]
MDR←[A]
MDR←[B]
MDR←[ALUr]
MDR←[ALUx]
MDR←[PSR] Moves flag contents
MDR←[M[MAR]] Performs a memory read operation
M[MAR]←[MDR] Performs a memory write operation
CU←[IR(opcode)] 8-bit transfer
IR←[MDR]
SP←[ALUx]
SP←[ALUr]
SP←[MDR]
SP←[IR(operand)] 8-bit transfer, hi-byte of result = 0x00
PSR←[MDR] Restore 16-bit PSR contents
ALUy←[JUMPERS(IntBase)] Transfer the interrupt base address to ALUy
ALUx←[PSR(IntVec)] Transfer the interrupt vector to ALUx
PSR(IntVec)←[IR(operand)] Set the interrupt vector
PSR(IntVec)←[MDR] Set the interrupt vector with low 3-bits of

MDR

Table A.3 Data movement micro-instructions - continued

ALU Micro-Instructions

The ALU micro-instructions are listed in table A.4.

321

Fundamentals of Computer Architecture

Code Operation RTL Notes
0000 ADD ALUr=[ALUx]+[ALUy] Perform a 2’s complement ADD operation,

adding the ALUx and ALUy bit patterns to-
gether and storing the result in the ALUr
register

0001 ADC ALUr=[ALUx]+[ALUy]+[PSR(c)] Perform a 2’s complement ADC operation,
adding the ALUx and ALUy and C flag to-
gether and storing the result in the ALUr
register

0010 SUB ALUr=[ALUx]-[ALUy] Perform a 2’s complement SUB operation,
subtracting the ALUy from the ALUx bit
pattern and storing the result in the ALUr
register

0011 SL ALUr=[ALUx]<<1 Perform a logical shift left on the ALUx,
storing the result in the ALUr

0100 SR ALUr=[ALUx]>>1 Perform a logical shift right on the ALUx,
storing the result in the ALUr

0101 AND ALUr=[ALUx]&[ALUy] Perform a logical AND operation on the
ALUx and ALUy bit patterns and storing the
result in the ALUr register

0110 OR ALUr=[ALUx]|[ALUy] Perform a logical OR operation on the ALUx
and ALUy bit patterns and storing the result
in the ALUr register

0111 NOT ALUr=~[ALUx] Perform a logical NOT operation on the
ALUx and storing the result in the ALUr
register

1000 NEG ALUr=~[ALUx]+1 Perform a 2’s complement negative opera-
tion on the ALUx and storing the result in
the ALUr register

1001 INC ALUr=[ALUx]+1 Add 1 to the ALUx bit pattern, storing the
result in the ALUr

1010 DEC ALUr=[ALUx]-1 Subtract 1 from the ALUx bit pattern, storing
the result in the ALUr

1011 SWAP ALUr(7:0)=[ALUx(15:8)];
ALUr(15:8)=[ALUx(7:0)]

Swap the most significant byte and the least
significant byte of the ALUx, storing the
result in the ALUr

1100 MUL ALUr=[ALUx]*[ALUy] Multiply the ALUx value by the ALUy value,
storing the result in the ALUr

1101 DIV ALUr=[ALUx]/[ALUy] Divide the ALUx value by the ALUy value,
storing the result in the ALUr

1110 MOD ALUr=[ALUx]%[ALUy] Divide the ALUx value by the ALUy value,
storing the remainder in the ALUr

Table A.4 ALU micro-instructions

322

The JASP Toolkit

Whenever an ALU operation is executed, the PSR flags V, N, C and Z are
updated. Table A.5 shows how the flags are updated by each ALU operation -
a key to this table is given in table A.6.

Operation V N Z C
ADD * * * *
ADC * * * *
SUB * * * *
SL 0 * * *
SR 0 * * *
AND 0 * * 0
OR 0 * * 0
NOT 0 * * 0
NEG * * * *
INC * * * *
DEC * * * *
SWAP 0 * * 0
MUL * * * 0
DIV * * * 0
MOD * * * 0

Table A.5 How ALU operations affect the PSR flags

Flag Meaning
V * means that if 2’s complement overflow occurs then V=1 else V-0

(division overflow in cases of DIV and MOD)
0 means that V=0

N * means N=MSB(ALUr)
Z * means if (ALUr==0) then Z=1 else Z=0
C * means if (carry from MSB of ALUr) then C=1 else C=0

* except with SR this means if (carry from LSB of ALUr) then C=1 else C=0
0 means that C=0

Table A.6 The key to figure A.5

323

Fundamentals of Computer Architecture

Test Micro-Instructions

The four PSR flags may be tested. If a test evaluates to TRUE, any remaining
micro-instructions in that microprogram are executed. Otherwise the micro-
instructions following the test are ignored.

The valid test micro-instructions are listed in table A.7.

RTL Notes
if(PSR(c)==1) Carry flag set
if(PSR(c)==0) Carry flag clear
if(PSR(n)==1) Negative flag set
if(PSR(n)==0) Negative flag clear
if(PSR(z)==1) Zero flag set
if(PSR(z)==0) Zero flag clear
if(PSR(v)==1) Overflow flag set
if(PSR(v)==0) Overflow flag clear

Table A.7 Test micro-instructions

Processor Control Micro-Instructions

The valid processor control micro-instructions are listed in table A.9.

ALU Connectivity To The Data Bus

The individual registers of the ALU are connected to the data bus via the ALU
data bus connection circuitry. A 2-bit code is given to this circuitry to connect
or disconnect ALU registers from the bus. The codes are listed in table A.8.

Code Notes
00 All ALU registers disconnected from the bus
01 ALUx is connected to the bus
10 ALUy is connected to the bus
11 ALUr is connected to the bus

Table A.8 ALU connectivity to the data bus

324

The JASP Toolkit

A.2.3 Memory

JASP has 8Kb of memory, accessed as 4096 16-bit words (addresses $0000

to $0FFF). Some implementations of JASP can have extra memory installed.
For example, JASPer can have a maximum of 65536 words of memory
(addresses $0000 to $FFFF).

An address points to a 16-bit word and all memory accesses are words. Note
that this may not be the case with some popular microprocessors which have
byte-addressable memories.

RTL Notes
PSR(I)=0 Set the interrupt flag to 0
PSR(I)=1 Set the interrupt flag to 1
PSR(E)=0 Set the interrupt enable flag to 0
PSR(E)=1 Set the interrupt enable flag to 1
HALT Processor halt
NOP No operation

Table A.9 Processor control micro-instructions

Two registers are associated with memory accesses. The Memory Data Reg-
ister (MDR) contains the data value which is about to be written to memory
or a value which has been read from memory. The Memory Address Register
(MAR) contains the memory address of a read or write operation.

Think of MAR as a pointer to a word of memory. The pointer may be moved
by altering the value held in MAR. Values may be transferred from the MDR to
memory (Write) or from Memory to the MDR (Read).

To write a value into memory you do the following:

RTL Description

MDR<-00FF Place data in MDR

MAR<-0010 Place address in MAR

M[MAR]<-[MDR] Update memory

Note the sequence of operations performed when writing data into memory.
The address and data values are loaded into the MAR and MDR respectively
and a write cycle is performed.

A memory read is as follows:

325

Fundamentals of Computer Architecture

RTL Description

MAR<-0010 Place address in MAR

MDR<-[M[MAR]] Read memory

MDR now contains [M[0010]]

The memory map is shown in figure A.2.

00FF
0100

0FFF
1000

FFFF

00F8
00F7

0000

00DF
00E0
00E1
00E2
00E3
00E4

00E7
00E8
00E9
00EA
00EB
00EC
00ED
00EE
00EF
00F0

Not installed in
default configuration

User programs and data

RAM

Year
Month
Day

Reserved
Timer

Hour
Minute
Second

System
Clock

Interrupt vector table

Reserved

Description

IDR
ISR
ODR
OSR Memory mapped

I/O Device

RAM

User programs and data

Address

Peripheral box communication

Figure A.2 The JASP memory map

326

The JASP Toolkit

When accessing or writing to memory, all addresses are wrapped. So for ex-
ample, if memory is installed up to $0FFF, then writing to the address $1FFF

will still cause memory to be updated.

It can be seen that the small memory of the JASPER processor is used for a
variety of purposes. The bulk of the memory is available for storing user data
and instructions.

All peripherals have default locations within the memory map, but their
locations are configurable.

Memory Mapped I/O

Handshaking needs to be used in order to perform I/O.

To write a character to the screen, first check that the OSR port is set to 1, if
it’s not go into a loop until it is. Only then write the character to the ODR.

To read a character from the keyboard, keep checking until the ISR is set to 1,
only then should you read the character from the IDR.

Here is a piece of code that shows handshaking for both input and output:

* A demonstration of polled I/O

*

* This program reads 10 characters from the keyboard

* and then prints them all out once they’ve been entered

*

OSR EQU $E3 * Output Status Register (OSR)

ODR EQU $E2 * Output Data Register (ODR)

ISR EQU $E1 * Input Status Register (ISR)

IDR EQU $E0 * Input Data Register (IDR)

ORG 0

MOVE #$00,B * count is storage for our

MOVE B,count * counter value

loop MOVE ISR,A * Get ISR

CMP #$00,A * is a char available?

BEQ loop * no - wait some more

MOVE IDR,A * read the char

MOVE count,B * the address to write the

ADD #data,B * value to is count+data

MOVE A,(B) * write the char in there

327

Fundamentals of Computer Architecture

MOVE count,B * add 1 to count

ADD #$01,B *

CMP #$0A,B * and see if we have reached 10 and

BEQ gotchars * move to next section if we have

MOVE B,count * otherwise write count back

JMP loop * and get another char

gotchars MOVE #$00,B * count is storage for our

MOVE B,count * counter value

write MOVE OSR,A * get OSR

CMP #$00,A * OSR 1 can print, OSR 0 can’t print

BEQ write * not yet, wait some more

MOVE count,B * the address to read the

ADD #data,B * value from is count+data

MOVE (B),A * get the char in there

MOVE A,ODR * print the char

MOVE count,B * add 1 to count

ADD #$01,B *

CMP #$0A,B * and see if we have reached 10

BEQ done * and move to end if we have

MOVE B,count * otherwise write count back

JMP write * and write another char

done HALT * done

count DS.W $01 * the counter

data DS.W $0A * storage for our 10 characters

Current System Time

Additionally, JASP has a system clock device. The current date and time is
accessible from $00E8 to $00ED. No handshaking is required, simply access
the particular memory location for the required date/time value. You cannot
write to these memory locations, although no errors are raised if you try.

Peripheral Box Communication

A prototype peripherals board has been configured to work with the JASP
processor - it was defined and built by Ian Chilton, under the supervision of
Mark Burrell.

328

The JASP Toolkit

The peripherals board uses four memory locations, by default installed be-
tween $00E4 and $00E7, and the JASP processor can communicate with
various input and output devices on the board. These include DIP switches, a
buzzer, various LEDs and digit displays.

The peripherals board is purely a prototype for demonstration purposes only.

Reserved Addresses

It is recommended that you do not use the reserved memory addresses for
storage - it could make your programs incompatible with future versions of
JASP.

A.2.4 The Interrupt Mechanism

The interrupt mechanism makes use of an interrupt vector table stored in
memory, and the I and E flags of the PSR.

The JASP processor can only deal with a single interrupt at any given time -
any further interrupts generated while the first interrupt is being handled will
be ignored. The actual details of the interrupt mechanism are definable within
the instruction set. Within the default instruction set the interrupt mechanism
is defined as:

PSR(I)=0 interrupt flag = 0

MAR<-[SP] } save PSR

MDR<-[PSR] } on the stack

M[MAR]<-[MDR] }

ALUx<-[SP] } decrement

ALUr=[ALUx]-1 } SP

SP<-[ALUr] }

ALUx<-[PC] }

MDR<-[ALUx] } write PC

MAR<-[SP] } to the stack

M[MAR]<-[MDR] }

ALUx<-[SP] } decrement

ALUr=[ALUx]-1 } SP

SP<-[ALUr] }

PSR(E)=0 interrupt enable flag = 0

ALUy<-[JUMPERS(IntBase)] }

ALUx<-[PSR(IntVec)] } build the vector address

ALUr=[ALUx]+[ALUy] }

MAR<-[ALUr] } obtain the handler address

MDR<-[M[MAR]] }

329

Fundamentals of Computer Architecture

PC<-[MDR] load address of handler into PC

The position of the vector table is configurable, but it defaults to the locations
$00F0 to $00F7.

A.2.5 JASP Files Reference

The JASP engine understands two file formats, these are the micro-instruction
and machine code formats. In previous versions these formats proved to be
somewhat stringent, and so have been made much more flexible.

Micro-Instruction File Format

Each micro-instruction file consists of a set of zero or more instruction defini-
tions. These definitions begin with an opcode directive and an opcode, and
then a set of micro-instructions to enter into the control unit micro-memory.
Blank lines can exist anywhere within the file, and comments can be written
after an asterisk. Each line in the micro-instruction file can be a maximum of
250 characters.

An instruction definition can also include two further directives, these are the
mnemonic and description directives. The mnemonic directive describes
the form of the mnemonic while the description directive gives a brief
description of the opcodes function. Both the mnemonic and description

directives expect their values to be within double quotes. Neither of these
tags are mandatory, both being set to null strings if they are not included.
If the line is not a directive and not a comment it is expected to hold a valid
micro-instruction, followed by an optional comment.

A typical micro-instruction file might consist of a number of micro-programs
each like the following instruction definition:

Opcode d0

* addr 00 to FF

Mnemonic "JSR addr"

Description "Jump to subroutine at a direct address"

ALUx<-[PC] }

MDR<-[ALUx] } write PC

MAR<-[SP] } to the stack

M[MAR]<-[MDR] }

ALUx<-[SP] } decrement

ALUr=[ALUx]-1 } SP

330

The JASP Toolkit

SP<-[ALUr] }

PC<-[IR(operand)]

Instruction Sets

JASP is provided with a default instruction set (instruct.mco). This instruction
set contains all single word instructions where the hi-byte is the opcode. This
set is limited to addressing memory in the range $0000 to $00FF.

To use the full memory available, use the advanced instruction set in
advanced.mco, however it is advisable to only use this instruction set in
conjunction with the assembler rather than with hand coding.

Machine Code File Format

Each machine code file consists of a set of zero or more machine code seg-
ments. These segments begin with an org directive and address, and then a
set of 16-bit values to enter into memory. Blank lines can exist anywhere within
the machine code file, and comments can be written after an asterisk charac-
ter. A simple program is shown below. Each line in the machine code file can
be a maximum of 250 characters. If a line does not begin as a comment and
does not have an org directive, then it is assumed to be a 16-bit value.

org 0400

45FF

3200

0001

F000 * this is the only comment in this program

A.3 JASPer

JASPer originally came into being as a clone of part of a software package for
VAX/VMS known as ASP, or Animated Simple Processor, designed and writ-
ten by William Henderson. The first Windows clone was known as WinASP,
but when the VAX/VMS version was no longer supported then this package
(which had grown into a package in its own right) became known as ASP. It
has now changed its name (again!) to JASPer, to avoid any confusion with
Microsoft ASP which is something totally different altogether.

331

Fundamentals of Computer Architecture

So what is JASPer? It is a package that simulates the JASP processor. It can
be used in one of two modes - either white-box mode where the internal reg-
isters of the processor are visible, or black-box mode where the user can see
the output produced by their programs. What this figure does not demonstrate
is that, when instructions are run (either individual micro-instructions or whole
machine code programs) all data movements are animated within the package
- graphically showing the inner workings of the processor.

Figure A.3 JASPer - the main graphic display

There are actually two different white-box views of the processor that can be
selected. The first, as illustrated in figure A.3 is the main animated display.
A second, simpler display, can be used instead - it is used for a number of
screen-shots in the main text of the book - the simpler display is shown in
figure A.4.

332

The JASP Toolkit

A.3.1 How To Use JASPer

The functionality of JASPer is accessed via the menu bar and the buttons
below the menu bar:

Figure A.4 JASPer - the simple display

The Menu Bar

The menu bar has five entries. These are for controlling the processor,
memory functions, etc. The menu bar looks like this:

333

Fundamentals of Computer Architecture

As you can see, each entry has one letter underlined, pressing this letter
together with the ALT key is the keyboard equivalent of clicking on the entry.
For example, typing ALT-M will bring up the memory menu.

The Buttons

The buttons provide the same functionality as the menu bar, only in a graphical
manner.

Usage

Both the menu bar and the buttons can be broken down into the same five key
function areas, and these are now described in turn.

The File Menu

The file menu accessed from the keyboard provides the same functionality as
the following set of buttons.

Button Menu Option Description

Open This option brings up a file open dialogue, allowing the user to open
either a microcode file (MCO), or a macrocode file (JAS).

Memory Dump Save JAS file containing all the contents of memory.

334

The JASP Toolkit

Button Menu Option Description

Jumper Settings This allows the user to control the animation features, including anima-
tion speed.

Switch State This option switches between black-box mode and white-box mode.
JASPer always starts in white-box mode, where the registers and data
paths of the processor can be seen. In black-box mode the JASPer win-
dow switches to a view of JASPer’s output - any I/O output will be seen
here.

The Processor Menu

The processor menu is equivalent to the following set of buttons:

Button Menu Option Description

Registers Brings up a dialogue where the user can change register values.

Flags Brings up a dialogue where the user can change flag values.

ALU Brings up a dialogue where the user can perform ALU operations.

Data Movement Allows the user to perform all data movement operations. Click on the
destination register first, followed by the source register in order to
perform the data movement.

335

Fundamentals of Computer Architecture

Button Menu Option Description

View Opcodes This option displays a summary of all the currently loaded opcodes
loaded into the processor. There are three parts to the display, the
opcode, the mnemonic and the brief description.

Microcode List This option doesn’t have an equivalent button - it combines both the ALU
and data movement operations. On using this option a further menu
is displayed, allowing the user to select a particular micro-instruction
to run - divided into ALU and data movement micro-instructions. The
data movement micro-instructions are displayed by destination - one
can select the destination and then an appropriate source register.

Fetch Cycle This option runs a single fetch cycle.

Execute Cycle This option runs a single execute cycle.

Trace This option runs one fetch-execute cycle

Go This runs the processor. The processor stops when either the Escape
key (acting as a reset button) is pressed, the mouse is clicked on the
JASPer window, or a halt instruction is executed. Note that, if animation
is turned on, even if the Escape key or the mouse is clicked on the
JASPer Window, the animation displays until either the current fetch or
the current execute cycle completes.

Reset This option resets the processor, as if the processor power switch has
been cycled.

The Memory Menu

The memory menu accessed from the keyboard provides the same function-
ality as the following set of buttons.

336

The JASP Toolkit

Button Menu Option Description

Read Perform a memory read operation

Write Perform a memory write operation

View This option brings up a dialogue which allows the user to view the con-
tents of memory. For each location it displays the address, value and
mnemonic (of the opcode that is stored in the most significant byte of
the memory address)

Block Fill This option brings up a dialogue that allows the user to fill user defined
memory locations with a definable word value.

Block Move This option brings up a dialogue that allows the user to copy the con-
tents of a given set of contiguous memory locations to another memory
location. The original contiguous memory is unaffected.

The Screen Menu

The memory menu accessed from the keyboard provides the same function-
ality as the following button.

Button Menu Option Description

Clear Terminal Terminal Clears the screen when JASPer is in black-box mode.

The Help Menu

The help menu accessed from the keyboard provides the same functionality
as the following set of buttons.

337

Fundamentals of Computer Architecture

Button Menu Option Description

Help Index This option displays the Windows help file for JASPer.

About JASPer This option brings up a dialogue that displays the current version of
JASPer and build date, together with a copyright statement.

A.3.2 JASPer Parameters

Parameters for JASPER are:

JASPER [/h*elp]

or

JASPER [/l*oad={macrocodefile}][/m*co={microcodefile}] [/pc={addr}]

[/n*odefault] [/bw] [/anim_off]

The meaning of each parameter is as follows:

/help - displays the parameters for the program.

/load - loads the given macrocode file

/mco - loads the given microcode file

/pc - sets the PC to the given value prior to running

/nodefault - instructs the processor not to load the default

instruction set

/bw - use the simple display rather than the full

graphic

/anim_off - animation switched off by default

A.4 Aspen

Aspen is a command-line version of JASPer, obviously without any graphical
display apart from a simple text output. Aspen actually uses the same proces-
sor engine as JASPer, and so the two programs share the (nearly) exact same
functionality. Figure A.5 shows Aspen running in a Windows 95 DOS window.
Versions of Aspen will run on any version of DOS (from V5.0 upwards), any
version of Microsoft Windows and Linux (ELF binary).

338

The JASP Toolkit

Figure A.5 Aspen

When you use Aspen, you need to either make sure the default instruction set
and the Aspen help file (aspen.hco) is in the same directory, or make use of
the JASP environment variable as detailed previously. Using Aspen, and any
text editor of your choice, it is possible to use even the lowliest 386 PC to
develop programs for JASPer.

If you have the JASP environment set, then when you attempt to open either
a microcode or a program file from within Aspen it will first attempt to find that
file within the current directory, and if it can’t find the file it will then look for it
in the directory named in the JASP environment. Please note that the 16-bit
version of Aspen only understands the 8.3 DOS naming convention.

Use the help facility within Aspen by typing help at the chevron prompt.

A.4.1 Aspen Parameters

Parameters for Aspen are:

ASPEN [/h*elp]

or

ASPEN [/l*oad={macrocodefile}][/m*co={microcodefile}] [/g*o] [/q*uit]

[/pc={addr}] [/n*odefault]

339

Fundamentals of Computer Architecture

The meaning of each parameter is as follows:

/help - displays the parameters for the program.

/load - loads the given macrocode file

/mco - loads the given microcode file

/go - instructs the processor to begin executing

/quit - instructs the program to close once the given

execution process has finished

/pc - sets the PC to the given value prior to running

/nodefault - instructs the processor not to load the default

instruction set

A.4.2 Example Programs Running on the JASP

Here is the same program, clock.jas as distributed with the JASPer package,
seen running in both JASPer and in Aspen.

340

The JASP Toolkit

A.5 The JASP Assembler

The JASP Cross-Assembler, to give it its full title, is a program written in Perl
that can be used to ease the process of creating assembly language programs
for the JASP processor.

The assembler should work on any system with a Perl installation, although it
has only been test on DOS and Linux systems.

A.5.1 The Instruction Set Used

By default the assembler uses instruct.mco as the default instruction set.
It then attempts to assemble your assembly language program using the
information it finds within the instruction set file.

A.5.2 Directives

It understands a limited set of directives, listed here:

341

Fundamentals of Computer Architecture

Directive Example Description
ORG org $0000 Sets the program origin
DC.B DC.B ’hello’,0 Stores a byte in memory, can also be used to specify text

strings
DC.W DC.W $1234 Stores a word in memory
DS.W DS.W 1 Defines storage in words
EQU IDR EQU $E0 Defines a constant
MCO MCO "advanced.mco" Specifies the instruction set to use
LPC LPC $0100 Sets the PC to a particular value
USE USE "advancedio.lib" Include a library file in the program

When a USE directive is encountered, the assembler attempts to load the file
from the current directory, and if that fails then it attempts to load the file from
the directory listed in the the JASP environment variable.

A.5.3 Usage

The options of the assembler are as follows:

jasm [-h]

or

jasm [-m mco][-a asm][-l type][-o filename]

The meaning of each parameter is as follows:

-m mco : loads a microcode file (can be multiple files

separated by a ’:’)

-a asm : loads a JASP assembler file

-l type : output type can be default|debug|code|printout

-o filename : send assembler listing to filename listed

-h : list this help information.

Additionally, the assembler understands a force 32bit directive that can be
placed in instruction set files. This has the effect of forcing all machine code
instructions to be written in 32 bits rather than the standard 16 bits.

342

The JASP Toolkit

A.5.4 Operand Sizes

The assembler, not understanding anything about assembly language, has to
make assumptions about the bit length of operands. To do this it makes use of
information within the instruction mnemonics.

For example, if the assembler sees something like data, addr or dis in a
mnemonic then it assumes that this operand should be 8 bits wide. However,
if the assembler sees something like dataword, addrword or disword in a
mnemonic then it assumes that this operand should be 16 bits wide.

The assembler also makes sure that words begin and end on word bound-
aries, and will pad out any odd bytes, to form 16-bit words, with zeroes to
ensure that all words are word aligned.

A.5.5 Error Messages

As the assembler has no real understanding of assembly language, but rather
can only read an instruction set and output machine code following very strict
rules, this means that often its error message leave a little to be desired.
Please treat this as part of the learning process - after all, without the as-
sembler you would have to encode every assembly language program by
hand!

A.6 The JASP C−− Compiler

The JASP C−− cross compiler is written by David Harrison. The program,
jcc, compiles programs written in a small educational language called C−−
into assembly language files that can then be assembled by the JASP assem-
bler. The name of the language is a pun on the language C++; David admits
it isn’t a great pun.

The syntax rules for high-level languages tend to be written in a form known
as Extended Backus-Naur Form, or EBNF. Within EBNF, symbols are defined
in terms of other symbols. For example, an if construct in C−− is described
as:

if ::= ’if’ ’(’ express ’)’ statement ’else’ statement

| ’if’ ’(’ express ’)’ statement

This means that an if construct begins with the word if followed by a condi-
tion expression that is within brackets. If the condition is true then statement

343

Fundamentals of Computer Architecture

is executed (the definition of statement is elsewhere), and the statement after
the else is executed if the condition is false. Alternatively, the if statement
can omit the else section.

Lastly, any entries within square brackets, as shown below are optional.

variable dec ::= type ident [’=’ literal]

The production rules for C−− are given here:

program ::= declarations compstat

declarations ::= { declaration ’;’ }

compstat ::= ’{’ statement statements ’}’

statements ::= { statement }

declaration ::= constant_dec | variable_dec

statement ::= compstat | assign | input | output | if | while

constant dec ::= ’const’ type ident ’=’ literal

variable dec ::= type ident [’=’ literal]

assign ::= variable ’=’ express ’;’

input ::= ’cin’ ’>>’ ident ’;’

output ::= ’cout’ ’<<’ express ’;’

if ::= ’if’ ’(’ express ’)’ statement ’else’ statement

| ’if’ ’(’ express ’)’ statement

while ::= ’while’ ’(’ express ’)’ statement

type ::= ’bool’ | ’string’ | ’int’

ident ::= letter ident_chars

literal ::= boolit | stringlit | intlit

letter ::= ’A’ | .. | ’Z’ | ’a’ | .. | ’z’

344

The JASP Toolkit

ident_chars ::= { ident_char }

boolit ::= ’false’ | ’true’

stringlit ::= ’"’ { printable } ’"’

intlit ::= sign uint | uint

ident_char ::= letter | digit | ’_’

printable ::= ’ ’ | .. | ’~’ {ASCII codes 0x20 to 0x7F)

sign ::= ’+’ | ’-’

uint ::= digit { digit }

digit ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

express ::= basic relop express | basic

basic ::= term addop basic | term

term ::= factor mulop term | factor

factor ::= literal | ident | ’(’ express ’)’ | ’!’ factor

mulop ::= ’*’ | ’/’ | ’%’ | ’&&’

addop ::= ’+’ | ’-’ | ’||’

relop> ::= ’<’ | ’<=’ | ’==’ | ’>=’ | ’>’ | ’!=’

Using these rules we can compile programs such as the example below,
provided by David:

// Computes the maximum, minimum, total and average of a list

// of integers read from input. The input is terminated by a

// 0 on the input.

int n = 0 ; // Number read in

int max = 0 ; // Maximum

int min = 32767 ; // Minimum

int total = 0 ; // Total

345

Fundamentals of Computer Architecture

int count = 0 ; // Number of inputs

int average = 0 ; // Average

bool done = false ; // Input done flag.

bool done2 = true ; // Input done flag.

const string prompt // Prompt for input

= "Number : " ;

const string mess1 // Output messages

= "Maximum : " ;

const string mess2

= "Minimum : " ;

const string mess3

= "Total : " ;

const string mess4

= "Average : " ;

const string endl // End of line for output

= "\n" ;

const string countzero

= "count was zero" ;

{

// Prompt for and read integer. If number is 0 we’re done, otherwise

// increment count, add number into running total, check if it’s

// the maximum or minimum so far and prompt for the next number.

while (!done)

{ cout << prompt ;

cin >> n ;

if (n == 0)

{ done = true ; }

else

{ count = count + 1 ;

total = total + n ;

if (n > max)

{ max = n ; } ;

if (n < min)

{ min = n ; } ;

} ;

} ;

// Compute the average.

if (count != 0)

{

average = total / count ;

}

else

{

cout << countzero;

346

The JASP Toolkit

cout << endl;

};

// Output results

cout << mess1 ;

cout << max ;

cout << endl ;

cout << mess2 ;

cout << min ;

cout << endl ;

cout << mess3 ;

cout << total ;

cout << endl ;

cout << mess4 ;

cout << average ;

cout << endl ;

}

// End of program

The compiler doesn’t take any parameters, instead re-direction is used to pass
a C−− program to it, and the assembly language output can be re-directed
into an assembly language program file.

For example, imagine that we have a C−− program called myprog.c-- that
we want to run in Aspen. Provided that the program compiles with no errors
we would do the following:

jcc < myprog.c-- > myprog.asm

jasm -a myprog.asm -o myprog.jas

aspen /l=myprog.jas /m=advanced.mco

The first line uses the compiler to produce the assembly language program.
In the second line we assemble this to the machine code program. The third
line loads the program into Aspen, along with the advanced instruction set as
used by all programs created with the compiler. Once loaded into Aspen (or
JASPer) we can run the program.

Lastly, it is worth noting that the program jcc doesn’t make use of the JASP

environment variable, but then again it doesn’t need to.

347

Fundamentals of Computer Architecture

A.7 The JASP Software Libraries

Two libraries of subroutines are part of the JASP toolkit. The first library,
basicio.lib offers a few subroutines that are useful for text input and output,
and is only really intended to demonstrate the usefulness of libraries. It can
only be used in relatively small programs if they are intended to fit into memory
between $0000 and $00DF.

The second library, advancedio.lib, is more useful and offers a number of
extra subroutines not offered by basicio.lib.

To use a library in your assembly language program you need to use a USE

directive as shown here:

* include a library

USE "basicio.lib"

A.7.1 The Basic I/O Library

The subroutines provided by basicio.lib are:

* putstring - prints packed strings, address has to be in register A.

* putchar - prints a single character from lo-byte of register B.

* putword - prints a word held as 4 hex chars (from A)

* putbyte - prints a word held as 2 hex chars (from lo-byte of A)

* getchar - get a character from the keyboard, char in A register.

* newline - print a CR/LF pair

A.7.2 The Advanced I/O Library

The subroutines provided by advancedio.lib are superset of those offered
by basicio.lib. This library is so large that it can only usefully be used in
programs written for above $0100 in memory using the advanced instruction
set.

Here are the subroutines offered by this library:

* putdbyte - prints lo-byte of register A as decimal value.

348

The JASP Toolkit

* putdword - prints a word held as a decimal number

* putstring - prints packed strings, address has to be in register A.

* putchar - prints a single character from lo-byte of register B.

* putbyte - prints a word held as 2 hex chars (lo-byte of A)

* putword - prints a word held as 4 hex chars (from A)

* getchar - get a character from the keyboard, char in A register.

* newline - print a CR/LF pair

* getustring - read in an unpacked character string, address in A

* and required size in B

* putustring - print an unpacked character string, address in A

* inkey - read a character from the keyboard if available.

* getdword - read up to 6 chars and interpret as a signed decimal value

* getbyte - read 2 chars and interpret as a hexadecimal value

* getword - read 4 chars and interpret as a hexadecimal value

* getdbyte - read up to 4 chars and interpret as a signed decimal value

349

Fundamentals of Computer Architecture

350

