
1

CS 5523 Lecture 9: CORBA

Discuss Laboratory 2
CORBA objects and IDL
The ShapeList example in CORBA
CORBA naming service
Other CORBA services
Recommended reading

CORBA overview:

Middleware that allows communication between programs
independent of language, OS, hardware, and network

Applications are built from CORBA objects
CORBA objects implement interfaces defined in IDL
Clients access methods in the IDL interfaces by RMI
RMI is implemented by an ORB (Object Request Broker)

Remote interfaces – Java RMI versus CORBA:

CORBA – uses IDL to specify remote interfaces

JAVA – uses ordinary interfaces that are extended by the
keyword remote.

2

CORBA objects:

implement an IDL interface

have a remote object reference

can respond to invocations of methods in the IDL interface

How do CORBA objects differ from Java RMI?

CORBA objects can be implemented in non-OO languages

clients don’t have to be objects

classes cannot be implemented in IDL – so no objects can be
passed, only data structures

How does a data structure differ from an object?

CORBA IDL interfaces:

specify a name and a set of methods

parameters are marked with keywords in, out, or inout

parameters can be of a primitive type or constructed type

allows exceptions to be defined in interfaces and thrown by
methods

invocation is at-most-once by default (can also specify oneway)

3

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 5.2
CORBA IDL example

// In file Person.idl
struct Person {

string name;
string place;
long year;

} ;
interface PersonList {

readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

};

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 4.7
CORBA CDR for constructed types

Type Representation
sequence length (unsigned long) followed by elements in order
string length (unsigned long) followed by characters in order (can also

can have wide characters)
array array elements in order (no length specified because it is fixed)
struct in the order of declaration of the components
enumerated unsigned long (the values are specified by the order declared)
union type tag followed by the selected member

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 4.8
CORBA CDR message

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3
4–7
8–11
12–15
16–19
20-23
24–27

5

"Smit"

"h___"

6

"Lond"

"on__"

1934

index in
sequence of bytes 4 bytes

notes
on representation
length of string

‘Smith’

length of string
‘London’

unsigned long

4

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.1
IDL interfaces Shape and ShapeList

struct Rectangle{ 1
long width;
long height;
long x;
long y;

} ;

struct GraphicalObject { 2
string type;
Rectangle enclosing;
boolean isFilled;

};

interface Shape { 3
long getVersion() ;
GraphicalObject getAllState() ; // returns state of the GraphicalObject

};

typedef sequence <Shape, 100> All; 4
interface ShapeList { 5

exception FullException{ }; 6
Shape newShape(in GraphicalObject g) raises (FullException); 7
All allShapes(); // returns sequence of remote object references 8
long getVersion() ;

};

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.2
Java interface ShapeList generated by idltojava from CORBA interface ShapeList

public interface ShapeList extends org.omg.CORBA.Object {
Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException;
Shape[] allShapes();
int getVersion();

}

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.3
ShapeListServant class of the Java server program for CORBA interface ShapeList

import org.omg.CORBA.*;
class ShapeListServant extends _ShapeListImplBase {

ORB theOrb;
private Shape theList[];
private int version;
private static int n=0;
public ShapeListServant(ORB orb){

theOrb = orb;
// initialize the other instance variables

}
public Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException { 1

version++;
Shape s = new ShapeServant(g, version);
if(n >=100) throw new ShapeListPackage.FullException();
theList[n++] = s; 2

theOrb.connect(s);
return s;

}
public Shape[] allShapes(){ ... }
public int getVersion() { ... }

}

5

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.4
Java class ShapeListServer

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class ShapeListServer {

public static void main(String args[]) {
try{

ORB orb = ORB.init(args, null); 1
ShapeListServant shapeRef = new ShapeListServant(orb); 2
orb.connect(shapeRef); 3
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService"); 4
NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent("ShapeList", ""); 5
NameComponent path[] = {nc}; 6
ncRef.rebind(path, shapeRef); 7
java.lang.Object sync = new java.lang.Object();
synchronized (sync) { sync.wait();}

} catch (Exception e) { ... }
}

}

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.5
Java client program for CORBA interfaces Shape and ShapeList

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class ShapeListClient{

public static void main(String args[]) {
try{

ORB orb = ORB.init(args, null); 1
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent("ShapeList", "");
NameComponent path [] = { nc };
ShapeList shapeListRef =

ShapeListHelper.narrow(ncRef.resolve(path)); 2
Shape[] sList = shapeListRef.allShapes(); 3
GraphicalObject g = sList[0].getAllState(); 4

} catch(org.omg.CORBA.SystemException e) {...}
}

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.6
The main components of the CORBA architecture

client server

proxy

or dynamic invocation

implementation
repository object

adapter

ORBORB

skeleton

or dynamic skeleton

client
program

interface
repository

Request

Reply
corecorefor A

Servant
A

6

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.7
IDL module Whiteboard

module Whiteboard {
struct Rectangle{
...} ;
struct GraphicalObject {
...};
interface Shape {
...};
typedef sequence <Shape, 100> All;
interface ShapeList {
...};

};

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.8
IDL constructed types – 1

Type Examples Use
sequence typedef sequence <Shape, 100> All;

typedef sequence <Shape> All
bounded and unbounded sequences
of Shapes

Defines a type for a variable-length
sequence of elements of a specified
IDL type. An upper bound on the
length may be specified.

string String name;
typedef string<8> SmallString;
unbounded and bounded
sequences of characters

Defines a sequences of characters,
terminated by the null character. An
upper bound on the length may be
specified.

array typedef octet uniqueId[12];
typedef GraphicalObject GO[10][8]

Defines a type for a multi-dimensional
fixed-length sequence of elements of a
specified IDL type.

this figure continues on the next slide

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.8
IDL constructed types – 2

Type Examples Use
record struct GraphicalObject {

string type;
Rectangle enclosing;
boolean isFilled;

};

Defines a type for a record containing a
group of related entities. Structs are
passed by value in arguments and
results.

enumerated enum Rand
(Exp, Number, Name);

The enumerated type in IDL maps a
type name onto a small set of integer
values.

union union Exp switch (Rand) {
case Exp: string vote;

case Number: long n;
case Name: string s;

The IDL discriminated union allows
one of a given set of types to be passed
as an argument. The header is
parameterized by an enum, which
specifies which member is in use.};

7

CORBA pseudo objects:

provide interfaces to the functionality of the ORB

have IDL interfaces, but cannot be passed as remote references

examples:
init – method to initialize the ORB

connect – method used to register objects with the ORB

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Page 684
CORBA interoperable object references

IOR format

IDL interface type name Protocol and address details Object key
interface repository
identifier

IIOP host domain
name

port number adapter name object name

CORBA naming service:

binder providing facilities for servers to register remote objects

provides facilities for clients to resolve names by name

names are structured hierarchically

each name in a path is inside a structure NameComponent

8

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.9
Naming graph in CORBA Naming Service

initial naming context

ShapeList

C
D E

B

initial naming context

P

R S T

V

Q U

initial naming context

XX

CORBA naming service (contined):

initial naming context – provides a root for a set of bindings

clients and servers request initial naming context

an object of type NamingContext is returned and names are
relative to it

an object is either a remote object or a NamingContext

names are of type NameComponents and have a name and a
kind.

a Name type is a sequence of NameComponents

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.10
Part of the CORBA Naming Service NamingContext interface in IDL

struct NameComponent { string id; string kind; };

typedef sequence <NameComponent> Name;

interface NamingContext {
void bind (in Name n, in Object obj);

binds the given name and remote object reference in my context.
void unbind (in Name n);

removes an existing binding with the given name.
void bind_new_context(in Name n);

creates a new naming context and binds it to a given name in my context.
Object resolve (in Name n);

looks up the name in my context and returns its remote object reference.
void list (in unsigned long how_many, out BindingList bl, out BindingIterator bi);

returns the names in the bindings in my context.
};

9

CORBA services:

trading service – allows location of CORBA objects by attribute

transaction service –
implements transactions with two-phase commit

start with a begin and terminate with commit or rollback

give all or nothing semantics

concurrency service – allows lock on an object

persistent object service – allows objects to store themselves

CORBA event services:

suppliers (objects of interest) can communicate notifications to
subscribers (consumers)

notifications can either be pushed or pulled (PushConsumer
interface versus PullSupplier interface)

event channels –
allow multiple suppliers to communicate with multiple consumers

asynchronously

suppliers get proxy consumers from the event channel

consumers get proxy suppliers from the event channel

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 17.11
CORBA event channels

consumersupplier

proxy consumer
notification

proxy supplier

event channel

notificationnotification

10

CORBA notification services:

extends the event server

notifications may be data structures

event consumers may use filters

event suppliers can discover which events consumers are
interested in

channel properties can be configured

an event repository is provided

CORBA recommended reading:

The October 1998 Issue of the Communications of the ACM was
devoted to new developments in CORBA. It contains many
excellent articles.

For next time:

Answer questions 5.1, 5.2, 5.3, 5.4, 5.5 and 5.12
Read CDK 6.1-6.3

