
1

CS 5523 Lecture 8:
Introduction to Remote invocation

Questions on Laboratory 1
Models of programming in distributed systems
Objects and remote objects
Remote invocation and remote object references
A simple “Hello World” application in CORBA
Marshalling

Programming models for distributed applications:

Remote method invocation (RMI) – an object in one process can
invoke methods of objects in another process

Remote procedure call (RPC) – client calls the procedure in a
server program that is running in a different process

Event notification – objects receive notification of events at other
objects for which they have registered

These mechanism must be location-transparent. The first two are
traditional client-server (pull), while event notification is a push
strategy

Basic steps for client-server (pull strategies):

Client or its proxy marshalls the information that would be used
for local access (do operation, call, or invocation) into a message
and sends to the remote server.

The server or its proxy unmarshalls the message and performs
the request as though it were made locally.

The server or its proxy then marshalls the result into a message
and sends it to the remote client.

The client or its proxy unmarshalls the message and treats the
result as though it were obtained locally.

What is a proxy and why might it be useful?

Marshalling:

marshalling – process of transforming a collection of data items
into a form suitable for transmission as a message

unmarshalling – process of disassembling a message into its
pre-marshalled equivalent.

The process requires a predefined format. Examples:
XDR standardized external data representation (RPC)

CORBA common data representation (CDR)

Java object serialization (Java RMI)

Convert to ASCII (HTTP)

Microsoft’s format

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 5.1
Middleware layers

Applications

Middleware
layersRequest reply protocol

External data representation

Operating System

RMI, RPC and events

Systems that support RMI:

CORBA – Common Object Request Broker Architecture

Java RMI

Microsoft’s Distributed Common Object Model

(DCOM, now COM)

SOAP/.NET

2

Review of objects:
An object encapsulates both data and methods

Objects are accessed via object references

Interfaces – provide definitions of signature of a set of methods

Actions are performed in OO by having objects invoke methods
of other objects, the invoker is called a “client” of the object

Invocation can cause:
the state of the receiver to be changed (modifier methods)

additional invocations of methods on other objects

Exceptions are thrown when an error occurs. If object doesn’t
“catch” the exception, the exception is delivered to the caller
(similar to signals, but at the programming language level)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 5.3
Remote and local method invocations

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 5.4
A remote object and its remote interface

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods

Remote object reference:

An object must have the remote object reference of an object in
order to do remote invocation of an object

Remote object references may be passed as input arguments or
returned as output arguments.

Parameters of a method in Java are input parameters

Returned result of a method in Java is the output parameter

Objects are serialized to be passed as parameters

When a remote object reference is returned, it can be used to
invoke remote methods

Non-remote serializable objects are copied by value

Remote object reference:

An object must have the remote object reference of an object in
order to do remote invocation of an object

Remote object references may be passed as input arguments or
returned as output arguments.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 4.10
Representation of a remote object reference

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bits

3

Remote interface (RMI):

The remote interface specifies the methods of an object that are
available for remote invocation

Input and output parameters are specified. The parameters may
be objects

Use:
When the remote method is invoked, the actual arguments corresponding

to the input parameters are marshalled into a packet and sent to the server.

The server demarshals the packet, performs the procedure, remarshals the
output arguments, and sends the return packet to the caller.

Client demarshals the return packet

Need a common format definition for how to pass objects (e.g., CORBA
IDL or Java RMI)

Interfaces:

Specify procedures (methods) and variables that can be
accessed in a module

No information other than that specified by the interface can be
communicated.

Do not specify an implementation

Types of interfaces:
Service interface (RPC)

Remote interface (RMI)

Remote interface:

CORBA – uses IDL to specify remote interfaces

JAVA – uses ordinary interfaces that are extended by the
keyword remote.

Example of CORBA IDL
module HelloApp
{

interface Hello
{
string sayHello();
oneway void shutdown();

};
};

idlj -fall Hello.idl

This generates the following files in the HelloApp subdirectory:

Hello.java, HelloHelper.java, HelloHolder.java,

HelloOperations.java, HelloPOA.java and _HelloStub.java.

Map into Java by running the IDL-to-java:

HelloClient.java
import HelloApp.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;

public class HelloClient {
static Hello helloImpl;

public static void main(String args[]){
try{

ORB orb = ORB.init(args, null); // create and initialize the ORB
// get the root naming context

org.omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");
// Use NamingContextExt instead of NamingContext. This is
// part of the Interoperable naming Service.
NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
String name = "Hello"; // resolve the Object Reference in Naming
helloImpl = HelloHelper.narrow(ncRef.resolve_str(name));
System.out.println("Obtained a handle on server object: " + helloImpl);
System.out.println(helloImpl.sayHello());
helloImpl.shutdown();

} catch (Exception e) {
System.out.println("ERROR : " + e);
e.printStackTrace(System.out);

}
}

}

HelloServer.java
// HelloServer.java
// Copyright and License
import HelloApp.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POA;

import java.util.Properties;

class HelloImpl extends HelloPOA {
private ORB orb;

public void setORB(ORB orb_val) {
orb = orb_val;

}

// implement sayHello() method
public String sayHello() {
return "\nHello world !!\n";

}

// implement shutdown() method
public void shutdown() {
orb.shutdown(false);

}
}

4

HelloServer.java (continued)
public class HelloServer {

public static void main(String args[]) {
try{
ORB orb = ORB.init(args, null); // create and initialize the ORB

// get reference to rootpoa & activate the POAManager
POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
rootpoa.the_POAManager().activate();
HelloImpl helloImpl = new HelloImpl(); // create servant and register it with the ORB
helloImpl.setORB(orb);

// get object reference from the servant
org.omg.CORBA.Object ref = rootpoa.servant_to_reference(helloImpl);
Hello href = HelloHelper.narrow(ref);

// get the root naming context
org.omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");

// Use NamingContextExt which is part of the Interoperable Naming Service (INS) spec
NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

String name = "Hello"; // bind the Object Reference in Naming
NameComponent path[] = ncRef.to_name(name);
ncRef.rebind(path, href);
System.out.println("HelloServer ready and waiting ...");
orb.run(); // wait for invocations from clients

} catch (Exception e) {
System.err.println("ERROR: " + e);
e.printStackTrace(System.out);

}
System.out.println("HelloServer Exiting ...");

}
}

Running CORBA (server on pandora, port 20000):

Compile the client and server:
javac HelloClient.java HelloApp/*.java
javac HelloServer.java HelloApp/*.java

Start the Java Object Request Broker Daemon on server host:

Start the HelloServer on server host:

orbd –ORBInitialPort 20000 –ORBInitialHost pandora.cs.utsa.edu &

Start the client on another machine, say ten23:

java HelloServer –ORBInitialPort 20000

java HelloClient –ORBInitialHost pandora.cs.utsa.edu –ORBInitialPort 20000

Be sure to kill your orbd when finished….

Why is this easier than just doing sockets?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 4.7
CORBA CDR for constructed types

Type Representation
sequence length (unsigned long) followed by elements in order
string length (unsigned long) followed by characters in order (can also

can have wide characters)
array array elements in order (no length specified because it is fixed)
struct in the order of declaration of the components
enumerated unsigned long (the values are specified by the order declared)
union type tag followed by the selected member

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 4.8
CORBA CDR message

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3
4–7
8–11
12–15
16–19
20-23
24–27

5

"Smit"

"h___"

6

"Lond"

"on__"

1934

index in
sequence of bytes 4 bytes

notes
on representation
length of string

‘Smith’

length of string
‘London’

unsigned long

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 4.9
Indication of Java serialized form

The true serialized form contains additional type markers; h0 and h1 are handles

Serialized values
Person

3

1934

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:
h1

Explanation

class name, version number

number, type and name of
instance variables

values of instance variables

5

For next time:

Read CDK 4.3 and Chapter 17

