
1

CS 5523 Lecture 10:
RMI details and invocation semantics

Continue with Java RMI from last lecture
Java object serialization
Callbacks
Design issues for remote calls and invocation
RPCs
Invocation semantics

Java object serialization:

flattens object(s) into compact form for disk storage or message
transmission

process doing deserialization has no knowledge of the object
structure

Serialization allows you to save objects to disk and read them
back it. Serialization allows you to send objects over a socket or
other communication stream and be able to reconstitute a copy on
the other end.

2

Example of a Java object:

public class Person implements Serializable {
private String name;
private String place;
private int year;
public Person (String aName, String aPlace, int aYear) {

name = aName;
place = aPlace;
year = aYear;

}
// methods

}

What do you have to do to serialize this? Ans: Nothing!

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 4.9
Indication of Java serialized form

The true serialized form contains additional type markers; h0 and h1 are handles

Serialized values
Person

3

1934

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:
h1

Explanation

class name, version number

number, type and name of
instance variables

values of instance variables

3

Java serialization details:

Serialization file description:
AC ED (magic number)
00 05 (version number of object serialization format)

Object representation:
73
class descriptor
object data

Serial numbers:
class descriptors and objects only appear once in the file
they are assigned 4-byte serial numbers

the next time a class or object is encountered, it is specified by the serial
number rather than the class description.

Java serialization details (cont):

Class descriptor:
72
2-byte length of class name
class name
8-byte fingerprint (based on first 8 bytes of HAS = Secure Hash Algorithm)
1-byte flag (classes that implement Serializable have a flag of 02)
2-byte count of data field descriptors
data field descriptors
78 (end marker)
superclass type or 70 if none

If the same Class is used again in the file:
71
4-byte serial number

4

Java serialization details (cont):

Field descriptors:
1-byte type code: (B = byte, C = char, D = double, … [= array)
2-byte length of field name
field name
class name (if field is an object)
2-byte count of data field descriptors
data field descriptors
78 (end marker)
superclass type or 70 if none

If the same class is used again in the file:
71
4-byte serial number

Java serialization details (cont):

Array representation
75
class descriptor
4-byte number of entries
entries

Other data:
00
data value

Representation of unicode values uses Universal Transfer
Format (UTF)

5

Writing your own serialization routines:

Simply implement:

readObject() and writeObject() for the special things.

Java reflection:

Reflection is the ability to determine the properties of a class
dynamically

The Java package java.lang.reflect contains tools for
analyzing classes.

Remote object references may be passed as input arguments or
returned as output arguments.

6

Callbacks:

Instead of client polling the server, the server calls a method in
the client when it is updated.

Callback refers to server’s action in notifying the client

Client creates a remote object that implements an interface for
server to call.

Server provides an operation for clients to “register” their
callbacks.

When an event occurs, the server calls the interested clients.`

Callback pluses:

More efficient than polling

More timely than polling

Provides a way of server inquiring about client status

7

Callback minuses:

May leave server with inconsistent state if client crashes or exits
without notifying the server

Requires the server to make a series of synchronous RMI’s

Leasing can overcome the first problem. Event notification to
address the second problem.

Design issues for remote calls and invocation:

What are invocation semantics? (Local calls are invoked exactly
once. Under what circumstances can this fail to happened for
remote calls?)

Transparency (Local calls are made to in environment of the
calling process. How is the choice of environment handled for
remote calls?)

8

Types of invocation semantics:

Exactly once semantics – every method is executed exactly once

Maybe semantics – caller can not determine whether or not the
remote method has been executed

At-least-once semantics – caller either receives a result (in which
case the user knows the method was executed at least once) or
an exception

At-most-once semantics - caller either receives a result (in which
case the user knows the method was executed at exactly once) or
an exception

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 5.5
Invocation semantics

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

9

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 5.6
The role of proxy and skeleton in remote method invocation

object A object Bskeleton
Request

proxy for B

Reply

CommunicationRemote Remote referenceCommunication
modulemodulereference module module

for B’s class
& dispatcher

remote
client server

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 5.7
Role of client and server stub procedures in RPC

client

Request

Reply

CommunicationCommunication
modulemodule dispatcher

service

client stub server stub
procedure procedure

client process server process

procedureprogram

10

Service interface (RPC):

A server provides a set of procedures available to client

These procedures are specified by a service interface

Input and output parameters are specified

Use:
When the remote procedure is invoked, the values of arguments

corresponding to the input parameters are converted to a standard external
representation and copied into a packet (marshaling).

The client sends the marshaled packet to the server.

The server demarshals the packet, performs the procedure, marshals the
return packet, and sends the marshaled return packet to the client.

Client demarshals the return.

The entire procedure is concealed in the call.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 4.14
RPC exchange protocols

Name Messages sent by
Client Server Client

R Request
RR Request Reply

RRA Request Reply Acknowledge reply

11

RPC based on TCP or UDP:

RPC can be based on TCP or UDP – what are the design issues
with respect to invocation semantics?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 5.8
Files interface in Sun XDR

const MAX = 1000;
typedef int FileIdentifier;
typedef int FilePointer;
typedef int Length;
struct Data {

int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

};

struct readargs {
FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
version VERSION {

void WRITE(writeargs)=1; 1
Data READ(readargs)=2; 2

}=2;
} = 9999;

12

Example: Sun RPC:

RFC 1831

Used in the Sun NFS network file system

Sometimes called Open Network Computing RPC (ONC RPC)

Can use either UDP or TCP or broadcast UDP.

Uses XDR as an interface definition language

Only single input and output parameters are allowed

Sun RPC runs a local binding services called a port mapper on
each host

For next time:

Read CDK 4.3 and 17.1-17.2

