
Distributed Systems Fö 11/12 - 1

Petru Eles, IDA, LiTH

DISTRIBUTED REAL-TIME SYSTEMS

1. What is a Real-Time System?

2. Distributed Real Time Systems

3. Predictability of Real-Time Systems

4. Process Scheduling

5. Static and Dynamic Scheduling

6. Clock Synchronization

7. Universal Time

8. Clock Synchronization Algorithms

9. Real-Time Communication

10. Protocols for Real-Time Communication

Distributed Systems Fö 11/12 - 2

Petru Eles, IDA, LiTH

What is a Real-Time System?

☞ A real-time system is a computer system in which the
correctness of the system behavior depends not only
on the logical results of the computations but also on
the time when the results are produced.

☞ Real-time systems usually are in strong interaction
with their physical environment. They receive data,
process it, and return results in right time.

Examples:

• Process control systems
• Computer-integrated manufacturing systems
• Aerospace and avionics systems
• Automotive electronics
• Medical equipment
• Nuclear power plant control
• Defence systems
• Consumer electronics
• Multimedia
• Telecommunications

Distributed Systems Fö 11/12 - 3

Petru Eles, IDA, LiTH

Distrib uted Real-Time Systems

Real-time systems very often are implemented as
distributed systems. Some reasons:

• Fault tolerance

• Certain processing of data has to be performed at
the location of the sensors and actuators.

• Performance issues.

Distributed Systems Fö 11/12 - 4

Petru Eles, IDA, LiTH

Distributed Real-Time Systems (cont’d)

Comp1

Network

Sensor

Comp2

Dev1

Comp3

Dev2

Comp4

Dev3

Comp5

Dev4Actuator



Distributed Systems Fö 11/12 - 5

Petru Eles, IDA, LiTH

Real -Time Systems
Some Typical Features

• They are time - critical.
The failure to meet time constraints can lead to
degradation of the service or to catastrophe.

• They are made up of concurrent processes (tasks).

• The processes share resources (e.g. processor)
and communicate to each other.
This makes scheduling of processes a central
problem.

• Reliability and fault tolerance are essential.
Many applications are safety critical.

• Very often, such systems are dedicated to a
specific functionality.
They perform a certain specific job which is fixed.
This is opposed to standard, general purpose
computing, where several different programs are
run on a computer to provide different services.

• Such systems are very often embedded in a larger
system, like a car, CD-player, phone, camera, etc.

Distributed Systems Fö 11/12 - 6

Petru Eles, IDA, LiTH

Soft and Har d Deadlines

☞ Time constraints are often expressed as deadlines at
which processes have to complete their execution.

A deadline imposed on a process can be:

• Hard deadline: has to be met strictly, if not ⇒
"catastrophe".

- should be guaranteed a-priori, off-line.

• Soft deadlines: processes can be finished after its
deadline, although the value provided by
completion may degrade with time.

• Firm deadlines: similar to hard deadlines, but if the
deadline is missed there is no catastrophe, only the
result produced is of no use any more.

Distributed Systems Fö 11/12 - 7

Petru Eles, IDA, LiTH

Predictability

☞ Predictability is one of the most important properties
of any real-time system.

☞ Predictability means that it is possible to guarantee
that deadlines are met as imposed by requirements:

- hard deadlines are always fulfilled.
- soft deadlines are fulfilled to a degree which is

sufficient for the imposed quality of service.

Some problems concerning predictability:

• Determine worst case execution times for each
process.

• Determine worst case communication delays on
the interconnection network.

• Determine bound on clock drift and skew (see
later).

• Determine time overheads due to operating system
(interrupt handling, process management, context
switch, etc.).

• After all the problems above have been solved,
comes the "big question":
Can the given processes and their related
communications be scheduled on the available
resources (processors, buses), so that deadlines
are fulfilled?

Distributed Systems Fö 11/12 - 8

Petru Eles, IDA, LiTH

Scheduling

The scheduling problem:

Which process and communication has to be executed
at a certain moment on a given processor or bus
respectively, so that time constraints are fulfilled?

☞ A set of processes is schedulable if, given a certain
scheduling policy, all constraints will be completed (if
a solution to the scheduling problem can be found).



Distributed Systems Fö 11/12 - 9

Petru Eles, IDA, LiTH

Scheduling P olicies

When are the decisions taken?

Are processes preempted?

static scheduling

dynamic scheduling

preemptive scheduling

non-preemptive scheduling

Distributed Systems Fö 11/12 - 10

Petru Eles, IDA, LiTH

Scheduling Policies (cont’d)

Static scheduling: decisions are taken off-line.

- A table containing activation times of processes
and communications is generated off line; this
table is used at run-time by a very simple
kernel.

Distributed Systems Fö 11/12 - 11

Petru Eles, IDA, LiTH

Static Sc heduling

Deadline on response: 15

Worst case execution times:
P1 2
P2 1
P3 3
P4 2
P5 7
P6 2
4→5 2
3→6 3

P1 P2 P3

P4

P5 P6

Stimulus

Response

Processor 1

Processor 2

Distributed Systems Fö 11/12 - 12

Petru Eles, IDA, LiTH

Static Scheduling (cont’d)

A first alternative

A second alternative

Processor 1

Processor 2

P1 P2 P4 P3

0

4→5 3→6

P5 P6

16

Processor 1

Processor 2

P1 P2P4 P3

0

4→5 3→6

P5 P6

15

Bus

Bus



Distributed Systems Fö 11/12 - 13

Petru Eles, IDA, LiTH

Static Scheduling (cont’d)

With the second alternative, the deadline is fulfilled.

Schedule table corresponding to second alternative:

Processor 1
0 P1
2 P4
4 P2
4 write on bus message 4→5
5 P3
8 write on bus message 3→6

Processor 2
6 read from bus message 4→5
6 P5

11 read from bus message 3→6
13 P6

We assume that the processors are able to process I/O
and programs in parallel (there is an I/O coprocessor).

Distributed Systems Fö 11/12 - 14

Petru Eles, IDA, LiTH

Static Scheduling (cont’d)

What is good?

- High predictability. Deadlines can be
guaranteed - if the scheduling algorithm
succeeded in building the schedule table.

- Easier to debug.

- Low execution time overhead.

What is bad?

- Assumes prior knowledge of processes
(communications) and their characteristics.

- Not flexible (it works well only as long as
processes/communications strictly behave as
predicted).

Distributed Systems Fö 11/12 - 15

Petru Eles, IDA, LiTH

Dynamic Sc heduling

☞ No schedule (predetermined activation times) is
generated off-line.

☞ Will the processes meet their deadlines?

This question can be answered only in very particular
situations of dynamic scheduling!
Schedulability analysis tries to answer it.

Distributed Systems Fö 11/12 - 16

Petru Eles, IDA, LiTH

Dynamic Scheduling (cont’d)

• Processes are activated as response to events
(e.g. arrival of a signal, message, etc.).

• Processes have associated priorities. If several
processes are ready to be activated on a
processor, the highest priority process will be
executed.

Priority based preemptive scheduling:
• At any given time the highest priority ready process

is running.
If a process becomes ready to be executed (the
respective event has occurred), and it has a higher
priority than the running process, the running
process will be preempted and the new one will
execute.



Distributed Systems Fö 11/12 - 17

Petru Eles, IDA, LiTH

Dynamic Scheduling (cont’d)

☞ With certain restrictions in the process model,
schedulability analyses can be performed:

For example:

• One single processor.

• All the n processes are periodic and have a fixed
(worst case) computation time ci, and period Ti.

• All processes have a deadline equal to their period.

• All processes are independent (no resources
shared and no precedence).

• Priorities are assigned to processes according to
their period ⇒ the process with shorter period gets
the higher priority.

Under the circumstances above, known as rate
monotonic scheduling, all processes will meet their
deadline if the following is true:

ci

Ti
-----

i 1=

n

∑ n 2

1
n
---

1–
 
 
 

≤

Distributed Systems Fö 11/12 - 18

Petru Eles, IDA, LiTH

Dynamic Scheduling (cont’d)

As result of research in the area of real-time systems,
schedulability tests have been developed for situations in
which some of the restrictions above are relaxed:

• Several processors.
• Precedence constraints and communications

between processes.
• Processes are sharing resources.
• Deadlines can be different from period.

☞ All schedulability tests require worst case execution
times for processes and communications to be
known!

Distributed Systems Fö 11/12 - 19

Petru Eles, IDA, LiTH

Specific Issues Concerning Distrib uted
Real-Time Systems

1. Clock synchronization

2. Real-Time Communication

Distributed Systems Fö 11/12 - 20

Petru Eles, IDA, LiTH

Cloc k Sync hronization

The need for synchronized distributed clocks:

• Time driven systems: in statically scheduled
systems activities are started at "precise" times in
different points of the distributed system.

• Time stamps: certain events or messages are
associated with a time stamp showing the actual
time when they have been produced; certain
decisions in the system are based on the "exact"
time of the event.

• Calculating the duration of activities: if such an
activity starts on one processor and finishes on
another (e.g. transmitting a message), calculating
the duration needs clocks to be synchronized.



Distributed Systems Fö 11/12 - 21

Petru Eles, IDA, LiTH

Computer Cloc ks

• A quartz crystal oscillates at well defined frequency
and oscillations are counted (by hardware) in a
register.

• After a certain number of oscillations, an interrupt is
generated; this is the clock tick.

• At each clock tick, the computer clock is
incremented by software.

Distributed Systems Fö 11/12 - 22

Petru Eles, IDA, LiTH

Computer Clocks (cont’d)

The problems:

1. Crystals cannot be tuned perfectly. Temperature
and other external factors can also influence their
frequency.

Clock drift: the computer clock differs from the real
time.

2. Two crystals are never identical.

Clock skew: the computer clocks on different
processors of the distributed system show different
time.

Distributed Systems Fö 11/12 - 23

Petru Eles, IDA, LiTH

"Univer sal" Time

• The standard for measurement of time intervals:
International Atomic Time (TAI).
It defines the standard second and is based on atomic
oscillators.

• Coordinated Universal Time (UTC): is based on TAI,
but is kept in step with astronomical time (by occa-
sionally inserting or deleting a "leap second").

• UTC signals are broadcast from satellites and land-
based radio stations.

Distributed Systems Fö 11/12 - 24

Petru Eles, IDA, LiTH

External and Internal Sync hronization

External Synchronization

Synchronization with a time source external to the
distributed systems, such as UTC broadcasting system.

• One processor in the system (possibly several) is
equipped with UTC receivers (time providers).

• By external synchronization the system is kept
synchronous with the "real time". This allows to
exchange consistently timing information with other
systems and with users.

Internal Synchronization

Synchronization among processors of the system.
• It is needed in order to keep a consistent view of

time over the system.

• A few processors synchronize externally and the
whole system is kept consistent by internal
synchronization.

• Sometimes only internal synchronization is
performed (we don’t care for the drift from external/
real time).



Distributed Systems Fö 11/12 - 25

Petru Eles, IDA, LiTH

Drifting of Cloc ks

∂1: drift of first clock after ∆t.
∂2: drift of second clock after ∆t.

∂1 + ∂2: skew between clocks after ∆t.

Per
fec

t c
loc

k
Fa

st
 c

lo
ck

Slow clock

t = UTC

C
=

cu
rr

en
tt

im
e

sh
ow

n
by

cl
oc

k

∆t

∂1

∂2

dC
dt
------- 1>

dC
dt
------- 1=

dC
dt
------- 1<

Distributed Systems Fö 11/12 - 26

Petru Eles, IDA, LiTH

Drifting of Clocks (cont’d)

In an ideal case, the clock shows UTC: C = t.

In reality:

ρ is the maximum drift rate, and should be
specified by the manufacturer.

Two processors with similar clocks could be apart with:
S = 2ρ∆t

If we have to guarantee a skew less than Smax, the
clocks have to be synchronized at an interval:

∆t < Smax/2ρ

dC
dt
------- 1=

dC
dt
------- 1 ρ±=

Distributed Systems Fö 11/12 - 27

Petru Eles, IDA, LiTH

Cloc k Sync hronization Algorithms

☞ Centralized Algorithms

• There exists one particular node, the so called time
server node.

- Passive time server: the other machines ask
periodically for the time. The goal is to keep the
clocks of all other nodes synchronized with the
time server. This is often the case when the
time server has an UTC receiver.

- Active time server: the time server is active,
polling the other machines periodically. Based
on time values received, it computes an update
value of the clock, which is sent back to the
machines.

☞ Distributed Algorithms

• There is no particular time server. The processors
periodically reach an agreement on the clock value.

- This can be used if no UTC receiver exists (no
external synchronization is needed). Only inter-
nal synchronization is performed.

- Several processors (possibly all) have an UTC
receiver. However, this doesn’t avoid clock
skews; internal synchronization is performed
using a distributed clock synchronization strategy.

Distributed Systems Fö 11/12 - 28

Petru Eles, IDA, LiTH

Cristian’ s Algorithm

☞ Cristian’s algorithm is a centralized algorithm with
passive time server. The server is supposed to be in
possession of the correct time (has an UTC receiver).

• Periodically (with period less than Smax/2ρ) each
machine sends a message to the time server
asking for the current time.

• T0 and T1 are the time shown by the clock of the
sending machine when sending the request and
receiving the answer, respectively.

T0

T1

T
im

e

Request

C = time at server when

sending the answer

Sending machine Time server



Distributed Systems Fö 11/12 - 29

Petru Eles, IDA, LiTH

Cristian’s Algorithm (cont’d)

As a first possible approximation, the receiver could set
its clock to:

Trec = C

However, it takes a certain time, Ttrans, for the replay to
get back to the sender:

Trec = C + Ttrans

How large is Ttrans? Possible estimation:
Trec = C + (T1 - T0)/2

Problem:
The time to receive the answer can be very different for
the one needed to transmit the request (because of
congestion on network, for example).

Can we, at least, determine the accuracy of the time
estimation?

Distributed Systems Fö 11/12 - 30

Petru Eles, IDA, LiTH

Cristian’s Algorithm (cont’d)

• Suppose the minimum time tmin needed for a
communication between the machine and the time
server is known.

The exact value for Trec is between:

Trec
min = C + tmin, when the answer has been transmitted in

minimum time,
and

Trec
max = C + (T1 - T0) - tmin, when the request has been

transmitted in minimum time.

The range is: Trec
max - Trec

min = (T1 - T0) - 2tmin

The time is set with an absolute accuracy of:
± ((T1 - T0)/2 - tmin)

• In order to improve accuracy, several requests can
be issued; the answer with the smallest (T1 - T0) is
used to update the clock.

Distributed Systems Fö 11/12 - 31

Petru Eles, IDA, LiTH

The Berkele y Algorithm

☞ The Berkeley algorithm is a centralized algorithm
with active time server.
It tries also to address the problem of possible faulty
clocks.

• The server polls periodically every machine to ask
for the current time.

• Based on received values, the server computes an
average.

• The server, finally, tells each machine with which
amount to advance or slow down its clock.

3:00

3:252:50

3:00

3:252:50

3:05

3:053:05

3:
00

-1
03:
00

+2
5

+1
5

-2
0

Distributed Systems Fö 11/12 - 32

Petru Eles, IDA, LiTH

The Berkeley Algorithm (cont’d)

☞ The situation is more complicated than the figure on
the previous slide shows:

• The server performs corrections, taking into
consideration estimated propagation times for
messages, before computing averages.

• If on a certain processor the clock has to be set
back, this has to be performed in a special way, in
order to avoid problems (see slide 35).

• The server tries to avoid taking into consideration
values from clocks which are drifted badly or that
have failed.

Only clock values are considered that do not differ
from one another by more than a certain amount.

• If the master fails, another one has to be elected.



Distributed Systems Fö 11/12 - 33

Petru Eles, IDA, LiTH

Distrib uted Cloc k Sync hronization Algorithms

☞ With distributed clock synchronization there is no
particular time server.

Distributed clock synchronization proceeds in three
phases, which are repeated periodically:

1. Each node sends out information concerning
its own time, and receives information from the
other nodes concerning their local time.

2. Every node analysis the collected information
received from the other nodes and calculates a
correction value for its own clock.

3. The local clocks of the nodes are updated
according to the values computed at step 2.

• The typical algorithm used at point 2 preforms the
following:

- The correction value for the local clock is based
on an average of the received clock values.

- When receiving time values from the other
nodes, corrections are performed taking into
consideration estimated delays due to message
passing.

- Only clock values are considered that do not
differ from one another by more than a certain
amount.

Distributed Systems Fö 11/12 - 34

Petru Eles, IDA, LiTH

Distributed Clock Synchronization (cont’d)

Localized Averaging Algorithm

• With a large network it is impractical to perform
synchronization among all nodes of the system.
Broadcasting synchronization messages from each
node to all other nodes generates a huge traffic.

• In large networks, nodes are logically structured
into structures, like grid or ring. Each node
synchronizes with its neighbours in the structure.

In the grid below:
Pr6 synchronizes with Pr2, Pr7, Pr10, and Pr5;
Pr7 synchronizes with Pr3, Pr8, Pr11, and Pr6.

Pr1 Pr2 Pr3 Pr4

Pr5 Pr6 Pr7 Pr8

Pr9 Pr10 Pr11 Pr12

Distributed Systems Fö 11/12 - 35

Petru Eles, IDA, LiTH

Adjusting Drifted Cloc ks

The problem

Suppose that the current time on the processor is Tcurr
and, as result of clock synchronization, it has to be
updated to Tnew.

• If Tnew > Tcurr, the solution is simple. Advance the
local clock to the new value Tnew.

• If Tnew < Tcurr, we are not allowed to simply set
back the local clock to Tnew.

Setting back the clock can produce severe errors,
like faulty time stamps to files (copies with identical
time stamp, or later copies with smaller time stamp)
and events.

It is not allowed to turn time back!

• Instead of turning the clock back, it is "slowed
down" until it, progressively, reaches a desired
value. This is performed by the software which
handles the clock tick (see also slide 21).

Distributed Systems Fö 11/12 - 36

Petru Eles, IDA, LiTH

Adjusting Drifted Clocks (cont’d)

At each clock tick, and increment of the internal clock
value θ is performed:

θ = θ + ν (ν is the step by which the internal clock
is incremented).

In order to be able to perform time adjustment, the
software time (Tcurr), which is visible to the programs
running on the processor, is not directly θ, but a software
clock which is updated at each tick with a certain
correction relative to θ:

Tcurr := θ(1 + a) + b if no adjustment is needed,
a = b = 0.

• The parameters a, and b are set when a certain
adjustment is needed, and used for the period the
adjustment is going on.



Distributed Systems Fö 11/12 - 37

Petru Eles, IDA, LiTH

Adjusting Drifted Clocks (cont’d)

Suppose at a certain moment:
• The internal clock shows θ
• The software clock shows Tcurr.
• The clock has to be adjusted to Tnew.
• The adjustment has to be performed

"smoothly" over a period of N clock ticks.

Now we have to fix a and b that are to be used during the
adjustment period:

• For the starting point we have to have:
Tcurr = θ(1 + a) + b (1)

• after N ticks the "real" time will be: Tnew + Nν.
• after N ticks, the software clock will show:

(θ + Nν)(1 + a) + b

If after N ticks the time adjustment is to be finished:
(θ + Nν)(1 + a) + b = Tnew + Nν (2)

From (1) and (2) above we get:

a = (Tnew - Tcurr)/Nν
b = Tcurr - (1 + a)θ

Distributed Systems Fö 11/12 - 38

Petru Eles, IDA, LiTH

Adjusting Drifted Clocks (cont’d)

☞ The above strategy works regardless if the
adjustment has to be performed forward (Tnew >
Tcurr) or backward (Tnew < Tcurr).

☞ If the adjustment is forward, it can be performed
directly by updating the clock.

☞ If the adjustment is backward the clock has to be
changed smoothly, like shown above.

Distributed Systems Fö 11/12 - 39

Petru Eles, IDA, LiTH

The Netw ork Time Pr otocol

• The NTP has been adapted as a standard for clock
synchronization through Internet.

• NTP allows for the implementation of a network
architecture in which primary and secondary time
servers are defined.

- Primary time servers are directly connected to
a time reference source (e.g. UTC receiver).

- Secondary time servers synchronize them-
selves (possibly via other secondary servers) to
primary servers over the network.

Based on the accuracy of each time server, a structure of
servers is defined, with primary servers at the top, and
secondary servers on the levels (strata) below.

primary servers

stratum 2

stratum 3

Distributed Systems Fö 11/12 - 40

Petru Eles, IDA, LiTH

The Network Time Protocol (cont’d)

• Primary servers have the highest accuracy of their
clocks. As the stratus level increases, the accuracy
degrades.

• A lower accuracy of a certain server can be caused
by the network paths towards the higher accuracy
stations, and/or by the stability of its local clock.

• There are several operating modes allowed by NTP,
similar to centralized algorithms with active or
passive server, and to distributed algorithms.



Distributed Systems Fö 11/12 - 41

Petru Eles, IDA, LiTH

The Network Time Protocol (cont’d)

One of the principal goals of NTP is to achieve
robustness. This implies resistance in the case of:

- Faulty clocks.
- Damaged network paths.
- Broken servers
- Malicious intruders (protection, for example, by

authentification).

In order to maintain acceptable accuracy (even in the
case of faults):

1. Filtering algorithm:
By this, the estimation of the offset of the local
clock, relative to a certain other server (called
peer) is improved. Repeated synchronization
attempts are performed and the low quality es-
timates are dropped out.

2. Selection algorithm:
Periodic attempts to find, for a given server, the
most reliable servers (peers) to be used as
clock source for synchronization.

Distributed Systems Fö 11/12 - 42

Petru Eles, IDA, LiTH

Real-Time Comm unication

Data flows
- from sensors and control panels to processors
- between processors
- from processors to actuators and displays

☞ In order to achieve predictability: hard real-time
systems need communication protocols that allow
the communication overhead to be bounded.

Comp1

Network

Sensor

Comp2

Dev1

Comp3

Dev2

Comp4

Dev3

Comp5

Dev4Actuator

Distributed Systems Fö 11/12 - 43

Petru Eles, IDA, LiTH

Real-Time Communication (cont’d)

Traffic in real-time systems:

• Constant rate:

Fixed-size packets are generated at periodic
intervals. This is typical for many control
applications, where the sensors generate a regular
traffic.

• Variable rate:

Can be produced by variable sized packets and/or
irregular intervals of generation. Voice and video
traffic usually exhibits variable rate.

Distributed Systems Fö 11/12 - 44

Petru Eles, IDA, LiTH

Ethernet Pr otocol

☞ Ethernet is a Carrier Sense Multiple Access/Collision
Detection (CSMA/CD) protocol.

• On Ethernet, any device can try to send a frame at
any time. Each device senses whether the line is
idle and therefore available to be used. If it is, the
device begins to transmit.

• If two or more devices have tried to send at the
same time, a collision is said to occur and the
frames are discarded. Each device then waits a
random amount of time and retries until successful
in getting its transmission sent.

Ethernet is inherently stochastic. It cannot provide
a known upper bound on transmission time.

Ethernet is not suitable for real-time applications.



Distributed Systems Fö 11/12 - 45

Petru Eles, IDA, LiTH

Protocols f or Real-Time Comm unication

• CAN protocol

• Token Ring

• TDMA protocol

TDMA is mostly suitable for applications with regular
data flow (constant rate).
It is the most reliable and predictable.

The CAN protocol provides a higher degree of flexibility
in the case of irregular flow.

Distributed Systems Fö 11/12 - 46

Petru Eles, IDA, LiTH

CAN Protocol

CAN = Control Area Network

☞ CAN is a Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA) protocol.

CAN is widely used in automotive applications, for
example in the Volvo S80.

• In the CAN protocol, collisions are avoided by
arbitration based on priorities assigned to
messages.

• CAN communication is based on the transfer of
packages of data called frames.

A CAN frame

• The identifier (ID) field is used for two purposes:
1. To distinguish between different frames.
2. To assign relative priorities to the frames

ID Data Area CRC

Cyclic redundancy checking

Distributed Systems Fö 11/12 - 47

Petru Eles, IDA, LiTH

CAN Protocol (cont’d)

A CAN controller is attached to each processor in the
system. It ensures that:

• The highest priority frame waiting to be transmitted
from the respective processor is entering the
arbitration for the bus.

• The arbitration procedure performed in cooperation
by the controllers, guarantees access to the
message with highest priority.

If the following assumptions are fulfilled, message
communication times can be bounded using techniques
similar to those developed for priority based process
scheduling (see slide 16):

• A given message is generated periodically, and a
worst case (minimal) period is known.

• The maximum size of each frame is known.
• The software overhead connected to handling of

messages is known.
• The maximum overhead due to errors and re-

transmission is estimated.

Distributed Systems Fö 11/12 - 48

Petru Eles, IDA, LiTH

Token Ring

• The right to transmit is contained in a special
control message, the token. Whoever has the
token, is allowed to transmit.

• Processors are logically organized in a ring, on
which the token is continuously passed.

With a token ring protocol maximum bounds on message
delay can be established.
The following are the essential parameters:

• The token hold time: the longest time a node may
hold the token.
This can be derived from communication speed on
bus and the maximum bound on the message
length.

• The token rotation time: the longest time needed for
a full rotation of the token.
This can be derived as k*Th, where k is the number
of processors, and Th is the token hold time.

☞ Fault tolerance can be a problem: if one node fails,
the traffic is disrupted.



Distributed Systems Fö 11/12 - 49

Petru Eles, IDA, LiTH

TDMA Protocol

TDMA = Time Division Multiple Access

• The total channel (bus) capacity is statically divided
into a number of slots. Each slot is assigned to a
certain node (processor).

• With a system of N processors, the sequence of N
slots is called a TDMA round. One processor can
send one frame in a TDMA round. The frame is
placed into the slot assigned to that processor.

• If no frame is to be sent by a processor, an empty
slot will be sent in that round.

• The duration of one TDMA round is the TDMA
period.

TDMA round 1

slot reserved
to processor 0

slot reserved
to processor 1

TDMA round 2

slot left empty
in this round

Distributed Systems Fö 11/12 - 50

Petru Eles, IDA, LiTH

TDMA Protocol (cont’d)

• TDMA practically means a static partitioning of
access time to the bus. Each processor knows in
advance when and for how long it is allowed to
access the bus.

• Collisions are avoided as processors know when
they have guaranteed exclusive access to the bus.

• Message passing delay is bounded: a message is
split into a certain number of frames which are
transmitted in successive slots (one per TDMA
round).

• Not all slots have to be of identical length. The slot
length corresponding to a given node is however
identical for all rounds. This length is determined by
the designer, depending on the particularities of the
processes running on each node (considering, for
example, the length and number of messages
generated)

Distributed Systems Fö 11/12 - 51

Petru Eles, IDA, LiTH

TDMA Protocol (cont’d)

Advantages:

• High degree of predictability

• Well suited to safety critical applications.

Disadvantages:

• Can lead to poor utilisation of the available bus
bandwidth (e.g. empty slots).

• Low degree of flexibility ⇒ problems with irregular
flows.

Distributed Systems Fö 11/12 - 52

Petru Eles, IDA, LiTH

Summar y

• A real-time system is a computer system in which
the correctness of the system behavior depends
not only on the logical results of the computations
but also on the time when the results are produced.

• Many real-time applications are implemented as
distributed systems.

• Deadlines in distributed systems can be soft and
hard. Hard deadlines have to be met strictly.

• Predictability is the most important property of a
real-time system.

• By scheduling it has to be determined which
process or communication to be executed at a
certain moment.

• With static scheduling, activation times are
determined a-priori.
Advantage: high predictability.
Problem: no flexibility.

• With dynamic scheduling it is more difficult to
guarantee that time constraints are fulfilled.
Under certain restrictions, however, this is possible.

• Specific issues with distributed embedded systems:
clock synchronization and real-time communication.

• External clock synchronization: synchronization
with time sources external to the system.
Internal clock synchronization: synchronization
among processors of the system.



Distributed Systems Fö 11/12 - 53

Petru Eles, IDA, LiTH

Summary (cont’d)

• Centralized algorithms for clock synchronization
are based on the existence of a time server node.
Such are: Cristian’s algorithm and the Berkeley
algorithm.

• Disitributed algorithms for clock synchronization
don’t need the presence of a particular server
node.

• The Network Time Protocol is used as a standard
for time synchronization in the Internet.

• The main problem with communication in
distributed real-time systems is predictability.

• The Ethernet is an example of protocol which
cannot be used with real-time applications because
no bounds can be derived on communication time.

• The CAN protocol is used in many automotive
applications. Predictability is provided by a priority
based handling of messages.

• The token ring protocol provides an upper bound
on communication time. Efficiency is low for many
applications. Fault tolerance can be a problem (if
one node fails, the traffic is disrupted).

• TDMA is based on a division of the channel
capacity into time slots which are assigned to the
particular processors.
TDMA provides high predictability and the potential
for safety critical applications.


