
1

WWW Case Study

Jonathan Walpole
CSE515 Distributed Systems

2

WWW Concepts

• What is the conceptual model?
• How are documents named?

3

Uniform Resource Locators

Often-used structures for URLs.
a. Using only a DNS name.
b. Combining a DNS name with a port number
c. Combining an IP address with a port number.

4

Uniform Resource Locators (2)

• Examples of URLs.

•modem:+31201234567;type=v32•Modem•modem

•tel:+31201234567•Telephone•tel

•telnet://flits.cs.vu.nl•Remote login•telnet

•data:text/plain;charset=iso-8859-7,%e1%e2%e3•Inline data•data

•file:/edu/book/work/chp/11/11•Local file•file

•ftp://ftp.cs.vu.nl/pup/minx/README•FTP•ftp

•http://www.cs.vu.nl:80/globe•HTTP•http

•Example•Used for•Name

5

Uniform Resource Names

• The general structure of a URN

6

WWW Concepts

• What is the architectural model?

7

Simple Client Server Architecture

8

WWW Concepts

• How are documents processed on the client?
• What is HTML?
• What is a client-side script?
• What is DOM and why do you need it?

9

Document Model (1)

• A simple Web page embedding a script written in JavaScript.

<HTML> <!- Start of HTML document -->
<BODY> <!- Start of the main body -->
<H1>Hello World/H1> <!- Basic text to be displayed -->
<P> <!- Start of a new paragraph -->
<SCRIPT type = "text/javascript"> <!- identify scripting language -->
 document.writeln ("<H1>Hello World</H1>; // Write a line of text
</SCRIPT> <!- End of scripting section -->
</P> <!- End of paragraph section -->
</BODY> <!- End of main body -->
</HTML> <!- End of HTML section -->

10

WWW Concepts

• What is XML?

11

Document Model (2)

• An XML definition for referring to a journal article.

(1) <!ELEMENT article (title, author+,journal)>
(2) <!ELEMENT title (#PCDATA)>
(3) <!ELEMENT author (name, affiliation?)>
(4) <!ELEMENT name (#PCDATA)>
(5) <!ELEMENT affiliation (#PCDATA)>
(6) <!ELEMENT journal (jname, volume, number?, month? pages, year)>
(7) <!ELEMENT jname (#PCDATA)>
(8) <!ELEMENT volume (#PCDATA)>
(9) <!ELEMENT number (#PCDATA)>
(10) <!ELEMENT month (#PCDATA)>
(11) <!ELEMENT pages (#PCDATA)>
(12) <!ELEMENT year (#PCDATA)>

12

Document Model (3)

• An XML document using the XML definitions from previous slide

(1) <?xml = version "1.0">
(2) <!DOCTYPE article SYSTEM "article.dtd">
(3) <article>
(4) <title> Prudent Engineering Practice for Cryptographic Protocols</title>
(5) <author><name>M. Abadi</name></author>
(6) <author><name>R. Needham</name></author>
(7) <journal>
(8) <jname>IEEE Transactions on Software Engineering</jname>
(9) <volume>22</volume>
(10) <number>12</number>
(11) <month>January</month>
(12) <pages>6 – 15</pages>
(13) <year>1996</year>
(14) </journal>
(15) </article>

13

WWW Concepts

• What are MIME types?
• What are browser plug-ins?

14

Document Types

• Six top-level MIME types and some common subtypes.

•Multipart

•Representation of a pointer device for presentations•Pointer

•Video

•Audio

•Image

•Text

•Parts must be viewed simultaneously•Parallel

•Independent parts in the specified order•Mixed

•A printable document in PDF•PDF

•A printable document in Postscript•Postscript

•An uninterrupted byte sequence•Octet-stream•Application

•Movie in MPEG format•MPEG

•A specific audible tone•Tone

•Audio, 8-bit PCM sampled at 8000 Hz•Basic

•Still image in JPEG format•JPEG

•Still image in GIF format•GIF

•Text including XML markup commands•XML

•Text including HTML markup commands•HTML

•Unformatted text•Plain

•Description•Subtype•Type

15

Clients (1)

• Using a plug-in in a Web browser.

16

WWW Concepts

• What is CGI?
• How are CGI programs invoked?
• What is the difference between a CGI program and a

browser plug-in?

17

Architectural Overview (1)

• The principle of using server-side CGI programs.

18

WWW Concepts

• What is a server script?
• How does a server recognize it?
• What do clients do with server scripts?
• What is the difference between a server script and a

CGI program?

19

Architectural Overview (2)

• An HTML document containing a JavaScript to be executed by the server

(1) <HTML>
(2) <BODY>
(3) <P>The current content of <pre>/data/file.txt</PRE>is:</P>
(4) <P>
(5) <SERVER type = "text/javascript");
(6) clientFile = new File("/data/file.txt");
(7) if(clientFile.open("r")){
(8) while (!clientFile.eof())
(9) document.writeln(clientFile.readln());
(10) clientFile.close();
(11) }
(12) </SERVER>
(13) </P>
(14) <P>Thank you for visiting this site.</P>
(15) </BODY>
(16) </HTML>

20

WWW Concepts

• What is an applet?
• How is an applet invoked?
• What is the difference between an applet and a

browser plug-in?
• What is a servlet?
• How is a servlet invoked?
• What is the difference between a servlet and a CGI

program?

21

Architectural Overview (3)

• Architectural details of a client and server in the Web.

22

WWW Concepts

• What communication protocols does the web use?
• What methods does HTTP support?

23

HTTP Methods

• Some example operations supported by HTTP.

•Request to delete a document•Delete

•Provide data that is to be added to a document (collection)•Post

•Request to store a document•Put

•Request to return a document to the client•Get

•Request to return the header of a document•Head

•Description•Operation

24

WWW Concepts

• Why was HTTP 1.0’s use of TCP inefficient?
• What is the difference between persistent and no-

persistent TCP connections?
• What are parallel, non-persistent connections?
• What is pipelining?

25

HTTP Connections

• Using nonpersistent connections.
• Using persistent connections

26

WWW Concepts

• How does client-side caching work?
• What is a web proxy?
• What are the consistency semantics?
• How does expiry-based caching work?

27

HTTP Messages (1)

• HTTP request message

28

HTTP Messages (2)

• HTTP response message.

29

HTTP Messages (3)

• Some HTTP
message
headers.

•Information about the status of the data in the message•Both•Warning

•The application protocol the sender wants to switch to•Both•Upgrade

•Refers to client's most recently requested document•Client•Referer

•A document reference to which the client should redirect its
request•Server•Location

•The time the returned document was last modified•Server•Last-Modified

•Tells the server to return a document only if it has not been
modified since the specified time•Client•If-Unmodified-Since

•Tells the server to return a document only if it has been modified
since the specified time•Client•If-Modified-Since

•The tags the document should not have•Client•If-None-Match

•The tags the document should have•Client•If-Match

•The TCP address of the document's server•Client•Host

•The client's e-mail address•Client•From

•The time how long the response remains valid•Server•Expires

•The tags associated with the returned document•Server•ETag

•Date and time the message was sent•Both•Date

•Security challenge the client should respond to•Server•WWW-Authenticate

•A list of the client's credentials•Client•Authorization

•The natural language the client can handle•Client•Accept-Language

•The document encodings the client can handle•Client•Accept-Encoding

•The character sets are acceptable for the client•Client•Accept-Charset

•The type of documents the client can handle•Client•Accept

•Contents•Source•Header

30

Clients (2)

• Using a Web proxy when the browser does not speak FTP.

31

WWW Concepts

• What are hierarchical and cooperative caching?
• Why do they lead to higher latency?
• What about dynamic documents?
• Why is server replication becoming more popular than

caching?

32

Web Proxy Caching

• The principle of cooperative caching

33

WWW Concepts

• Why structure web servers as a pipeline of processing
steps (such as Apache handlers)?

34

Servers

• General organization of the Apache Web server.

35

WWW Concepts

• How can we build scalable web servers?
• How would you structure a server cluster?

36

Server Clusters (1)

• The principle of using a cluster of workstations to implement a Web service.

37

WWW Concepts

• How can you prevent the front end from becoming a
bottleneck?

• How does a transport-layer switching differ from
application-layer (content-aware) switching?

• What are the relative advantages and disadvantages?

38

WWW Concepts

• What is TCP hand-off?
• Why does it improve scalability?

39

Server Clusters (2)

• The principle of TCP handoff.

40

Server Clusters (3)

• A scalable content-aware cluster of Web servers.

41

WWW Concepts

• What is a content distribution network (CDN)?
• How does a CDN discover server replicas close to the

client?
• How does it redirect current and subsequent requests

to that replica?
• How does this approach relate to DNS load balancing?

42

Server Replication

• The principle working of the Akami CDN.

43

Spare Slides

44

Building scalable web services

• A relatively easy problem….
– Why?

• HTTP: stateless, request-response protocol
• decoupled, independent requests

– How?
• divide and conquer
• replicate, partition, distribute, load balance

45

Outline

• Application layer tricks
– explicit server partitioning
– dynamic name resolution

• Transparent networking tricks
– virtual servers

• Case studies
– scalable content delivery (Yahoo!)
– content transformation engines
– transparent web caches
– scalable secure servers

46

Explicit server partitioning (static)

• Run a new server per resource/service
• Example

– www.blah.com
– mail.blah.com
– images.blah.com
– shopping.blah.com
– my.blah.com
– etc. etc.

47

Explicit server partitioning (static)

• Advantages
– better disk utilization
– better cache performance
– protection against DOS

• Disadvantages
– lower peak capacity
– coarse load balancing across servers/services
– management costs

48

Explicit server partitioning (dynamic)

• Basis for CDNs (Content Distribution Networks)
• Active “forward deployment” of content to explicitly named

servers near client
• Redirect requests from origin servers by

– HTTP redirects
– dynamic URL rewriting of embedded content

• Application-level multicast based on geographic information
• Akamai, Digital Island (Sandpiper), SightPath, Xcelera (Mirror-

image), Inktomi

49

Explicit server partitioning (dynamic)

Dynamically loaded
content servers

ogi.edu

espn.go.com

Local, high-speed ISP

Internet

2

4 5

a12.g.akamaitech.net
a668.g.akamaitech.net
a1284.g.akamaitech.net
a1896.g.akamaitech.net

3

Requested page with links
to embedded content
rewritten OR an HTTP
redirect

1

50

Explicit server partitioning (dynamic)

• Advantages
– better network utilization
– better load distribution

• Disadvantages
– distributed management costs
– storage costs
– currently OK as ($ network bw >> $ storage)

51

Outline

• DNS
– explicit server partitioning
– transparent name resolution (DNS load balancing)

• Networking tricks
– virtual servers

• Case studies
– scalable content delivery (Yahoo!)
– content transformation engines
– transparent web caches
– scalable secure servers

52

DNS load balancing

• Popularized by NCSA circa 1993
• Fully replicated server farm

– Centralized
– Distributed

• IP address per node
• Adaptively resolve server name (round-robin,

load-based, geographic-based)

53

DNS load balancing

[a-m].root-servers.net
 *.ncsa.uiuc.edu is served by
 ns0.ncsa.uiuc.edu (141.142.2.2)
 ns1.ncsa.uiuc.edu(141.142.230.144)
 dns1.cso.uiuc..edu (128.174.5.103)
 ns.indiana.edu (129.79.1.1)

ns0.ncsa.uiuc.edu
 www.nsca.uiuc.edu is
 141.142.2.28
 141.142.2.36
 141.142.2.42

1

2

3

4

DNS cache
Host: www.ncsa.uiuc.edu ttl=15min
DNS ns0.ncsa.uiuc.edu ttl=3days

5

ogi.edu

141.142.2.42

141.142.2.36

141.142.2.42

ncsa.uiuc.edu

6

7

54

DNS load balancing

• Advantages
– simple, easy to implement
– uses existing infrastructure

• Disadvantages
– coarse load balancing
– local DNS caching affects performance
– full server replication

55

DNS RFCs

• RFC 1794
– “DNS Support for Load Balancing”
– http://www.rfc-editor.org/rfc/rfc1794.txt

• RFCs 1034 and 1035 (1987)
– Replace older DNS RFCs 882 and 883 (1983)
– http://www.rfc-editor.org/rfc/rfc1034.txt
– http://www.rfc-editor.org/rfc/rfc1035.txt

56

Outline

• DNS
– server per resource partitioning
– dynamic name resolution

• Networking tricks
– virtual servers

• Case studies
– scalable content delivery (Yahoo!)
– content transformation engines
– transparent web caches
– scalable secure servers

57

Virtual servers

• Large server farm -> single virtual server
• Single front-end for connection routing
• Routing algorithms

– by load (response times, least connections, server load,
weighted round-robin)

– by layer 3 info (IP addresses)
– by layer 4 info (ports)
– by layer 5-7 info (URLs, Cookies, SSL session IDs, User-

Agent, client capabilities, etc. etc.)

58

Olympic web server (1996)

ogi.edu

Internet

Token Ring

4 x T3

1

4

3

IP=X

IP=X

IP=X

IP=X

IP=X
Load info

2

SYN routing
ACK forwarding

59

Olympic web server (1996)

• Front-end node
– TCP SYN

• route to particular server based on policy
• store decision (connID, realServer)

– TCP ACK
• forward based on stored decision

– TCP FIN or a pre-defined timeout
• remove entry

• Servers
– IP address of outgoing interface = IP address of front-end’s

incoming interface

60

Olympic web server (1996)

• Advantages
– only ACK traffic is processed
– more reactive to load than DNS

• Disadvantages
– non-stickiness between requests

• SSL
• cache performance

– software solution (prone to DOS)
– can’t support L5 switching

• must proxy both ways of connection
• need to rewrite ACKs going both ways

61

Other LB variations (L2-L4)
• Hardware switches

Internet IP=X

Private IP addresses

Hosting providerISPs

62

Other LB variations (L2-L4)

• Load balancing algorithms
– anything contained within TCP SYN packet

• sourceIP, sourcePort, destIP, destPort, protocol
• hash(source, dest, protocol)

– server characteristics
• least number of connections
• fastest response time
• server idle time

– other
• weighted round-robin, random

63

Virtual servers with L5
• Spoof server connection until URL sent
• Switch based on content in request
• Server-side NAT device
• Connections proxied through switch switch terminates
• TCP handshake

– switch rewrites sequence numbers going in both directions
– exception

• TCP connection migration from Rice University
• migrate TCP state (sequence no. information) to real server
• IP address of real server = IP address of virtual server

64

L5 switches
SYN SN=A

SYN SN=B ACK=A

ACK=B

HTTP request
SYN SN=A

SYN SN=C ACK=A

HTTP request

ACK=C

L5 switch
VirtualIP=X

Real server
RealIP=Y

HTTP response

Rewrite Y to X
 C to B

ACK

Rewrite X to Y
 B to C

Client

65

L5 switching

• Advantages
– increases effective cache/storage sizes
– allows for session persistence (SSL,cookies)
– support for user-level service differentiation

• service levels based on cookies, user profile, User-Agent,
URL

• Disadvantages
– content hot-spots
– overhead

66

Load balancing switches

• Cisco Local Director
• Cisco/Arrowpoint CS-100/800
• IBM Network Dispatcher
• F5 Labs BIG/ip
• Resonate Central Dispatch
• Foundry ServerIron XL
• Nortel/Alteon ACEDirector

67

Integrated DNS/virtual server approaches

• LB switches coordinate and respond to DNS requests
– based on load
– based on geographic location

• Vendors
– Cisco Distributed Director
– F5 Labs BIG/ip with 3DNS
– Nortel/Alteon ACEDirector3
– Resonate Global Dispatch

68

Integrated example

[a-m].root-servers.net
 www.blah.com served by
 A, B, and C

C

B

A

Internet

1. Request for
www.blah.com

3. www.blah.com is C

Load C < Load B < Load A or
proximity C > proximity B > proximity A

2. www.blah.com?

4. Request to www.blah.com

ogi.edu

69

Complications to LB

• Hot-spot URLs
– L5, URL switching bad

• Proxied sources
– (i.e. HTTP proxies (AOL), SOCKS, NAT devices etc.)
– L3, source IP switching bad

• Stateful requests (SSL)
– Load-based/RR bad

• IP fragmentation
– Breaks all algorithms unless switch defrags

70

Complications to LB

• IPsec
– must end IPsec tunnel at switch doorstep

• Optimizing cache/disk
– non-L5 solutions bad

• Optimizing network bandwidth
– non-Akamai-like solutions bad

71

Designing a solution

• Examine primary design goals
– load balancing performance
– cache hit rates
– CPU utilization
– network resources

• Apply solutions which fits problem

72

Yahoo!

[a-m].root-servers.net
 *.yahoo.com is served by
 ns1.yahoo.com (204.71.177.33)
 ns3.europe.yahoo.com (195.67.49.25)
 ns2.dca.yahoo.com (209.143.200.34)
 ns5.dcx.yahoo.com (216.32.74.10)

ns1.yahoo.com
 www.yahoo.com is
 204.71.200.68
 204.71.200.67
 204.71.200.75
 204.71.202.160
 204.71.200.74

204.71.200.68

204.71.200.67

1

2
3

4

DNS cache
Host: www.yahoo.com
NameServers: yahoo.com

5

ogi.edu

yahoo.com

6

akamaitech.net

7

us.yimg.com

89

73

Proxinet Example
• Application

– “Browser in the sky”
• Download and rendering done on a server
• Server does

– HTTP protocol functions
– HTML parsing, rendering, and layout
– Caching
– Transcoding of images
– Packaging and compression

• Client (Palm/PocketPC) does
– Basically nothing

• Server architecture
– CPU utilization and cache hit rates are biggest concerns
– Network efficiency and other resources are non-issues
– Want to support user and URL differentiation

• L5 killed on hot-spot URLs
• Load based algorithms killed on low cache hit rates (unless global cache is used)

74

Proxinet Example

• Solution: Use a hybrid like LARD
– load balance with URL to a certain limit
– load balance with least connections when load imbalanced
– provision by URL based on Benjamins

75

Transparent Web Caching

• Redirect web requests to cache transparently
• Eliminates client management costs over explicit HTTP

proxies
• How?

– Put web cache/redirector in routing path
– Redirector

• Pick off cacheable web requests
• rewrite destination address and forward to cache
• rewrite source address and return to client

76

Transparent Web Caching

Internet

Pick off web requests
rewrite addresses
route to caches

1
2

3

45

6

77

Security (1)

• The position of TLS in the Internet protocol stack.

78

Security (2)

• TLS with mutual authentication.

79

Scalable Secure Servers

• SSL handshake
• Server intensive processing

– 200 MHz PowerPC
– Client ~12ms processing
– Server ~50ms processing

• Session reuse avoids overhead of handshake
• Subsequent requests must return to initial server

80

Scalable Secure Servers

Client random + GMT + sessionID=0
cipher suites + compression methods

Server random + certificate + sessionID
cipher suites + compression methods

Server Hello

Client Hello

Client Key Exchange
Master secret encrypted w/ server public key

Finished

Application data

1. Verify cert, extract
server public key, encrypt
master secret w/ key

2. Decrypt master
secret with private
key, generate keys
and randoms

Dog slow

Client Server

3. Generate keys from
master secret + randoms

Initial SSL Handshake

81

Scalable Secure Servers

Client random + GMT + sessionID
cipher suites + compression methods

Server random + certificate + sessionID
cipher suites + compression methods

Server Hello + Finished

Client Hello

Finished
Application data

2. Generate keys from
cached master secret and
current randoms

1. Generate keys
from cached master
secret and current
randoms

Client Server

SSL session reuse

82

Scalable Secure Servers

• Source IP switching solution
– solves affinity problem
– load balancing poor

• SSL session ID switching
– solves affinity problem
– load balancing on initial handshake

