Message Busses & Linda Tuple Space

Jonathan Walpole

Department of Computer Science & Engineering
OGI/OHSU

Jonathan Walpole CSES515 - Distributed Computing Systems 1



Message Busses

Publisher-subscriber systems

message bus provides a level of indirection between publishers and
subscribers

persistence allows disconnected operation

supports synchronization among processes

Messages are sent (published) to and retrieved from mail
boxes

message propagation can be eager or lazy

Subject-based addressing

Content-based addressing (content matching)

Jonathan Walpole CSES515 - Distributed Computing Systems 2



Message Bus Implementation

Centralized server

easy to implement, but
bottleneck and single point of failure

Replicated caches

local accesses
space overhead

consistency management overhead
Distributed caches

location service?

Avallability and performance trade-off

Jonathan Walpole CSES515 - Distributed Computing Systems 3



Linda

Linda parallel programming language

tuple space

out (),in () andrd () primitives to add, remove and read tuples
eval () primitive to execute a tuple

associative content-based naming

Linda communication kernel

Implements persistent tuple space and tuple exchange

Jonathan Walpole CSES515 - Distributed Computing Systems 4



Linda Primitives

Out (t)
adds tuple t to the tuple space
In (s)
either, removes any tuple t that matches template s

and, assigns values of actuals in t to valiables in s

or, blocks
Rd (s)
like in(s) but the tuple is not removed from the tuple space

Eval (1)

like out (t), but t must be evaluated

Jonathan Walpole CSES515 - Distributed Computing Systems §



Naming

Content-addressible tuple space

based on partial matching (actuals must match)

like the select operation in relational databases
Example

out (“P”, 5, false)
in (“P”, int i, bool b)

Jonathan Walpole CSES515 - Distributed Computing Systems g



RPC in Linda?

Client

out (procedure_name, me, invocation-parameters)

In (me, result-parameters)

Linda using RPC?

Jonathan Walpole CSES515 - Distributed Computing Systems 7



The Programming Model

Distributed data structures

Initialized and cleaned up by coordination processes
manipulated by many “worker” processes in parallel
workers synchronize through the tuple space

naturally supports parallelism that would be difficult in client server
architecture with RPC

Example parallel matrix multiplication

Jonathan Walpole CSES515 - Distributed Computing Systems 8



The Initialization Process

Puts matrix data and worker instructions inthe TS

Out (“A”, 1, “row”, A’s-first-row)

Out (A", 2, “row”, A’s-second-row)
Out (“B”, 1, “col”, B’s-first-column)

Out (“dot”, 1, dim, “A”, “B”, “C”)

Jonathan Walpole CSES515 - Distributed Computing Systems Q



The Worker Processes

Find out what work to do

in (“dot”, var NextElem, var dim, var matl, var mat2, var prod);
If (NextElem < dim*dim)
out (“Dot”, NextElem + 1, dim, matl, mat2, prod);
| = (NextElem - 1)/dim + 1,
] = (NextElem - 1)%dim + 1;
Do the work and publish the result

read (matl, I, var row)
read (mat2, j, var col);

out (prod, I, j, DotProduct (row, col));

Jonathan Walpole CSES515 - Distributed Computing Systems 10



Cleanup Process

Pull in the elements, construct the product matrix and print it

for (row = 1 to NumRows)
for (col = 1 to NumCaols)
in (prod, row, col, var prod[row] [col]);

print prod

Jonathan Walpole CSES515 - Distributed Computing Systems 11



Whats nice about this?

Independent of number of worker processes
easily supports one worker per processor
good for heterogeneous or unbalanced systems

supports parallelism, asynchronous communication and
overlap of computation and communication

Is it message passing or shared memory?

Jonathan Walpole CSES515 - Distributed Computing Systems 12



How to Implement Tuple Space?

Tuple space is like a message bus with mail boxes
In and out are like receive and send of messages
Both are like writes in a shared memory system

Can be built using atomic broadcast

more efficient if underlying network supports it

still has high interrupt overhead since all processors get all
messages

communication co-processors help

Jonathan Walpole CSES515 - Distributed Computing Systems 13



Implementation 1

Fully replicated tuple space
outs go to all nodes via broadcast

INs go to all nodes via broadcast and use a deletion
algorithm

phase 1: inform all nodes that t is gone, repeating until successful
(delete is idempotent)

phase 2: t's origin node decides who succeeds and communicates
its decision via a reliable point-to-point message

rds are handled locally

Jonathan Walpole CSES515 - Distributed Computing Systems 14



Implementation 2

For Ethernet with no support for ordering and reliability

Protocol uses sequence numbers to order messages and
synchronize rds with ins and outs

storage optimizations

local outs
broadcast ins and rds

temporarily store templates

Jonathan Walpole CSES515 - Distributed Computing Systems 15



