
Jonathan Walpole CSE515 - Distributed Computing Systems 1

Message Busses & Linda Tuple Space

Jonathan Walpole

Department of Computer Science & Engineering
OGI/OHSU

Jonathan Walpole CSE515 - Distributed Computing Systems 2

Message Busses

• Publisher-subscriber systems

• message bus provides a level of indirection between publishers and
subscribers

• persistence allows disconnected operation

• supports synchronization among processes

• Messages are sent (published) to and retrieved from mail
boxes

• message propagation can be eager or lazy

• Subject-based addressing

• Content-based addressing (content matching)

Jonathan Walpole CSE515 - Distributed Computing Systems 3

Message Bus Implementation

• Centralized server

• easy to implement, but

• bottleneck and single point of failure

• Replicated caches

• local accesses

• space overhead

• consistency management overhead

• Distributed caches

• location service?

• Availability and performance trade-off

Jonathan Walpole CSE515 - Distributed Computing Systems 4

Linda

• Linda parallel programming language

• tuple space

• out (), in () and rd () primitives to add, remove and read tuples

• eval () primitive to execute a tuple

• associative content-based naming

• Linda communication kernel

• implements persistent tuple space and tuple exchange

Jonathan Walpole CSE515 - Distributed Computing Systems 5

Linda Primitives

• Out (t)

• adds tuple t to the tuple space

• In (s)

• either, removes any tuple t that matches template s

• and, assigns values of actuals in t to valiables in s

• or, blocks

• Rd (s)

• like in(s) but the tuple is not removed from the tuple space

• Eval (t)

• like out (t), but t must be evaluated

Jonathan Walpole CSE515 - Distributed Computing Systems 6

Naming

• Content-addressible tuple space

• based on partial matching (actuals must match)

• like the select operation in relational databases

• Example

out (“P”, 5, false)

in (“P”, int i, bool b)

Jonathan Walpole CSE515 - Distributed Computing Systems 7

RPC in Linda?

• Client

• out (procedure_name, me, invocation-parameters)

• in (me, result-parameters)

• Linda using RPC?

Jonathan Walpole CSE515 - Distributed Computing Systems 8

The Programming Model

• Distributed data structures

• initialized and cleaned up by coordination processes

• manipulated by many “worker” processes in parallel

• workers synchronize through the tuple space

• naturally supports parallelism that would be difficult in client server
architecture with RPC

• Example parallel matrix multiplication

Jonathan Walpole CSE515 - Distributed Computing Systems 9

The Initialization Process

• Puts matrix data and worker instructions in the TS

Out (“A”, 1, “row”, A’s-first-row)

Out (“A”, 2, “row”, A’s-second-row)

…

Out (“B”, 1, “col”, B’s-first-column)

…

Out (“dot”, 1, dim, “A”, “B”, “C”)

Jonathan Walpole CSE515 - Distributed Computing Systems 10

The Worker Processes

• Find out what work to do

in (“dot”, var NextElem, var dim, var mat1, var mat2, var prod);

if (NextElem < dim*dim)

out (“Dot”, NextElem + 1, dim, mat1, mat2, prod);

I = (NextElem - 1)/dim + 1;

j = (NextElem - 1)%dim + 1;

• Do the work and publish the result

read (mat1, I, var row)

read (mat2, j, var col);

out (prod, I, j, DotProduct (row, col));

Jonathan Walpole CSE515 - Distributed Computing Systems 11

Cleanup Process

• Pull in the elements, construct the product matrix and print it

for (row = 1 to NumRows)

for (col = 1 to NumCols)

in (prod, row, col, var prod[row] [col]);

print prod

Jonathan Walpole CSE515 - Distributed Computing Systems 12

Whats nice about this?

• Independent of number of worker processes

• easily supports one worker per processor

• good for heterogeneous or unbalanced systems

• supports parallelism, asynchronous communication and
overlap of computation and communication

• Is it message passing or shared memory?

Jonathan Walpole CSE515 - Distributed Computing Systems 13

How to Implement Tuple Space?

• Tuple space is like a message bus with mail boxes

• in and out are like receive and send of messages

• Both are like writes in a shared memory system

• Can be built using atomic broadcast

• more efficient if underlying network supports it

• still has high interrupt overhead since all processors get all
messages

• communication co-processors help

Jonathan Walpole CSE515 - Distributed Computing Systems 14

Implementation 1

• Fully replicated tuple space

• outs go to all nodes via broadcast

• ins go to all nodes via broadcast and use a deletion
algorithm

• phase 1: inform all nodes that t is gone, repeating until successful
(delete is idempotent)

• phase 2: t’s origin node decides who succeeds and communicates
its decision via a reliable point-to-point message

• rds are handled locally

Jonathan Walpole CSE515 - Distributed Computing Systems 15

Implementation 2

• For Ethernet with no support for ordering and reliability

• Protocol uses sequence numbers to order messages and
synchronize rds with ins and outs

• storage optimizations

• local outs

• broadcast ins and rds

• temporarily store templates

