Distributed File Systems

Jonathan Walpole
CSE515 Distributed Computing Systems



Design Issues

Naming and name resolution

Architecture and interfaces

Caching strategies and cache consistency
File sharing semantics

Disconnected operation and fault tolerance



Naming Files



Transparency Issues

o Can clientsdistinguish between local and remote files?

 Location transparency
— file name does not reveal the file's physical storage location.

 Location independence

— the file name does not need to be changed when the file's physical
storage location changes.



Global vs Local Name Spaces

o Global name space
— file names are globally unique
— any file can be named from any node

e Loca name spaces
— remote files must be inserted in the local name space
— file names are only meaningful within the calling node
— how do you refer to remote files in order to insert them?

— globally unique file handles can be used to map remote filesto local
names



How to Build a Name Space?

e Super-root / machine name approach
— concatenate the host name to the names of files stored on that host
— system-wide uniqueness guaranteed
— simpleto located afile
— not location transparent or |ocation independent

« Mounting remote file systems
— exported remote directory is imported and mounted onto local directory
— accesses require aglobally unigue file handle for the remote directory
— once mounted, file names are | ocation-transparent
* |ocation can be captured via naming conventions
— arethey location independent?

 |ocation of filevslocation of client?
 fileshave different names from different places



Local Name Spaces with Mounting

Client A

",
,
¢ i
¢ kY ‘
¢ AY
; :
K mbox
.'Il \\"

!

1 \

L 1
\ !
. s

Server

usersf\
E\;’ceen

!
!
!

P

W,

Client B

¢
i
!
!
i
[
!
|

h
h
h
N
mbox
i
A
1
h
|
!

Exported directory
mounted by client

work /E\ bin
me
e _F_\-\\
k1
! i
O Ik
ff K
K mbox
hl‘l \\

[ e S Y
| \
| |
L !
s e _ __ -

P

W,

Exported directory
mounted by client

Network




NSF Name Space

Server export s adirectory

mountd: provides a unique file handle for the exported directory

Client uses RPC toissue nf s_nount reguest to server

mountd receives the reguest and checks whether
— the pathname is a directory?
— the directory is exported to this client?



NFS File Handles

 \V-node contains

— referenceto afile handle for mounted remote files
— referenceto ani-node for locd files

* File handle uniquely names a remote directory
— file system identifier: unigue number for each file system (in UNIX super block)
— i-node and i-node generation number



Nested Mounting on Multiple Servers

Exported directory
contains imported
subdirectory

Client Server A
bi packages
Client
o imports
/’ \O directory
imports
directory
from
server B

Server B

Client needs to
explicitly import
subdirectory from
server B

Network

10



NFS Pathname Trand ation
Across Mount Points

Client: Serverl: Serverd-
Y /\ /\M
tocal aha.n-d |;|||;-j
. T Ji \.‘
' ;- \_"k
dirl i Y
& ol
{a)
Client: Client:
usr usT
local local %
dirl  n
dirl o N
L A r " B
............. ity
(k) 2 %
P i it e i i ik _1_1,
le)

MF3 joins independent file systems (al, by mounts (b), and cascading mounts (e).

11



NFS Pathname Trand ation
Across Mount Points

* Isdoneiteratively by client
o Example: /usr/local/dirl/myfile

— Lookup(/ I-node, usr) = /usr I-node

— Lookup(/usr I-node, local) = /usr/local file handle
o Server 1iscontacted

— Lookup(/usr/local file handle, dirl) = /usr/local/dir1l file handle
o Server 2iscontacted

— Lookup(/usr/local/dirl file handle, myfile) = /usr/local/dir /myfile
file handle

o Server 2iscontacted
o Server 1 cannot lookup dirl for client because dirl is
something else on server 1 than on client

o L ookups are cached .



Mounting On-Demand

Need to decide where and when to mount remote directories

Where? - Can be based on conventions to standardize local
name spaces (ie., /home/username for user home directories)

When? - boot time, login time, accesstime, ...7
What to mount when?
— How long does it take to mount everything?

— Do we know what everything is?
— Can we do mounting on-demand?

13



Automounting

e Anautomounter is aclient-side process that handles on-demand
mounting

— it actslike alocal NFS server

 Intercepts accesses to unmounted remote directories ( /home)
— accesses to /home go to local automounter

— /home/wal pole causes automounter to create local directory
/home/wal pole and mount remote directory /users/walpole there

 Qverhead of automounter indirection?

— Takesitself out of the loop by mounting remote /users/walpole under
/tmp_mnt/home/wal pole and making /home/walpole a symbolic link to it

14



Automounting in NSF

Client machine

iif 1. Lookup "/home/alice"

Server machine

3. Mount request

NFS client M Automounter

2. Create subdir "alice"i

‘ Local file system interface

hom‘e/
||

.

4. Mount subdir "alice"
from server

R ——

15




Using Symbolic Links with Automounting

home tmp_mnt

a|ic% %homa
-
t‘ftmp_mntfhomefalice"J h

ﬂ:“nyE

Symbolic link

alice

16



Architecture and Interfaces

17



Local Access Architectures

» Local access approach

move file to client
local access on client
return file to server
data shipping approach

1. File moved to client

Client / Server
I A Old file

<
? T~b New file

/

2. Accesses are
done on client

3. When client is done,
file is returned to
server

18



Remote Access Architectures

e Remote access

Client Server | il
> — leaveTtiieon .SGI’VGI' |
‘ — send read/write operations to
> ; server |
‘ — return results to client
Requests from \ . ..
client to access File stays — function shi ppIing approach
remote file oh server

19



File vs Block-Level Interface

e File-level client-server interface
— local access model with whole file movement and caching

— remote access model client-server interface at system call
level

— client performs remote open, read, write, close calls

* Block-level client-server interface
— client-server interface at file system or disk block level
— server offersvirtual disk interface
— client file accesses generate block access requests to server
— block-level caching of parts of fileson client

20



Hybrid Approaches

 Remote file operations
e Client-side caching of blocks

21



Distributed File System Architectures

o Server side
— how do servers export files
— how do servers handle requests from clients?

e Client side
— how do applications access a remote file in the same way as alocal file?

e Communication layer
— how do clients and servers communicate?

22



NFS Architecture

Client

System call layer

v

Virtual file system

Server

System call layer

Virtual file system
(VFS) layer

*

v

NFS server

Local file
system interface

*

RPC server
stub

(VFS) layer
Local file _
system interface NFS client
RPC client
stub
N

J

Network

23




NFS Server Side

Mountd

— server exports directory via mountd
— mountd provides theinitial file handle for the exported directory
— clientissues nf s_nount reguest via RPC to mountd

— mountd checks if the pathname is adirectory and if the directory is
exported to the client

nfsd: services NFS RPC calls, getsthe datafrom itslocal file
system, and replies to the RPC

— Usually listening at port 2049

Both mountd and nfsd use RPC

24



Communication Layer: NFS RPC Calls

Proc. |nput args Results

lookup dirfh, name status, fhandle, fattr
read fhandle, offset, count status, fattr, data
create dirfh, name, fattr status, fhandle, fattr
write fhandle, offset, count, data status, fattr

« NFS/RPC uses XDR and TCP/IP

« fhandle: 64-byte opague data (in NFS v3)

— what’sin the file handle?

25




NFS File Handles

 \V-node contains

— referenceto afile handle for mounted remote files
— referenceto ani-node for locdl files

* File handle uniquely names a remote directory
— file system identifier: unigue number for each file system (in UNIX super block)
— i-node and i-node generation number

26



NFS Client Side

» Accessing remote files in the same way as accessing
local files requires kernel support

— Vnode interface

read(fd,..) struct file

- WMode

Vnhode
offset

process
filetable

struct vnode

V_data

fs op

{int (*open)();
int (*close)();
int (*read)();
int (*write)();
int (*lookup)();

27



Caching

28



Caching vs Pure Remote Service

Network traffic?

— caching reduces remote accesses b reduces network traffic
— caching generates fewer, larger, data transfers

Server load?

— caching reduces remote accesses b reduces server load
Server disk throughput?

— optimized better for large requests than random disk blocks
Data integrity?

— cache-consistency problem due to frequent writes
Operating system complexity?

— simpler for remote service.

29



Caching

e Four placesto storefiles
— Server’s disk: slow performance

— Server’'s memory
 cache management, how much to cache, replacement strategy
o still slow due to network delay
— Client’sdisk
* access speed vs server memory?
* largefiles can be cached
 supports disconnected operation

— Client’s memory
o fastest access

 can be used by diskless workstations
» competes with the VM system for physical memory space

30



Cache Consistency

— Reflecting changes to local cache to master copy
— Reflecting changes to master copy to local caches

Copy 1

Master copy

update/invalidate
Copy 2

31



Common Update Algorithms for Client Caching

o Write-through: all writes are carried out immediately

— Rdiable: little information islost in the event of aclient crash
— Slow: cache not useful for writes

o Delayed-write: writes do not immediately propagate to server
— batching writes amortizes overhead
— wait for blocks to fill

— If datais written and then deleted immediately, data need not be written
at all (20-30 % of new data is deleted with 30 secs)

» Write-on-close: delay writing until the file is closed at the client
— semantically meaningful delayed-write policy
— 1f fileis open for short duration, works fine

— 1f fileis open for long, susceptible to losing data in the event of client
crash

32



Cache Coherence

How to keep locally cached data up to date / consistent?
Client-initiated approach

— check validity on every access: too much overhead

— first accessto afile (e.g., file open)

— every fixed timeinterval
Server-initiated approach

— server records, for each client, the (parts of) filesit caches

— server responds to updates by propagation or invalidation

Disallow caching during concurrent-write or read/write sharing
— alow multiple clients to cache file for read only access
— flush all client caches when the file is opened for writing

33



NFS — Server Caching

e Reads

— usethelocal file system cache
— prefetching in UNIX using read-ahead
o Writes

— write-through (synchronously, no cache)
— commit on close (standard behaviour in v4)

34



NFS — Client Caching (reads)

» Clientsareresponsible for validating cache entries
(stateless server)
« Validation by checking last modification time
— time stamps issues by server
— automatic validation on open (with server??)
e A cacheentry isconsidered valid if one of the following

are true:

— cacheentry islessthan t seconds old (3-30 sfor files, 30-60 s for
directories)
— modified time at server is the same as modified time on client

35



NFS — Client Caching (writes)

o Delayed writes
— modified files are marked dirty and flushed to server on close (or sync)

» Bio-daemons (block input-output)
— read-ahead requests are done asynchronously
— write requests are submitted when a block isfilled

36



File Sharing Semantics

37



Consistency Semantics for File Sharing

What value do reads see after writes?

UNIX semantics
— valueread isthe value stored by last write
— writesto an open file are visible immediately to others with the file open
— easy to implement with one server and no cache

Session semantics

— writesto an open file are not visible immediately to others with the file
opened already

— changes become visible on close to sessions started |ater

|mmutable-Shared-Files semantics
— A sharable file cannot be modified
— File names cannot be reused and its contents may not be altered
— Simple to implement.

Transactions

— All changes have all-or-nothing property
— W1,R1,R2,W2 not allowed where P1 = W1;W2 and P2 = R1;R2 38



NFS — File Sharing Semantics

Not UNIX semantics!
Unspecified in NFS standard
Not clear because of timing dependencies

Consistency issues can arise

— Example: Jack and Jill have afile cached. Jack opens the file and
modifies it, then he closes the file. Jill then opens the file (before t
seconds have elapsed) and modifiesit aswell. Then she closes the
file. Are both Jack’s and Jill’s modifications present in the file?
What if Jack closesthe file after Jill opensit?

Locking part of v4 (byte range, leasing)

39



File Locking In NFS

*Operation *Description

sLock *Creates a lock for a range of bytes

sLockt *Test whether a conflicting lock has been granted
sLocku *Remove a lock from a range of bytes

*Renew *Renew the lease on a specified lock

 NFSversion 4 operations related to file locking.

40



Request
access

Current
access
state

File Locking In NFS

Current file denial state

*NONE *READ *WRITE *BOTH
*READ *Succeed *Fail *Succeed *Succeed
*WRITE *Succeed *Succeed *Fail *Succeed
*BOTH *Succeed *Succeed *Succeed *Fail
Requested file denial state

*NONE *READ *WRITE BOTH
*READ *Succeed *Fail *Succeed *Succeed
*WRITE *Succeed *Succeed *Fail *Succeed
*BOTH *Succeed *Succeed *Succeed *Fail

The result of an open operation with share reservationsin NFS.
When the client requests shared access given the current denial state.
When the client requests a denial state given the current file access state.

41



Fault Tolerance

42



Stateful versus Statel ess Service

* Two approaches to server-side information

1 stateful file server

» aclient performs open on afile
the server keeps file information (e.g., file descriptor entry, offset)
Adv: increased performance
On server crash, it looses al its volatile state information
On client crash, the server needs to know to claim state space
2 statelessfile server -- each request is self-contained

« each request identifies the file, the position, read/write.

o server failureisidentical to slow server (client retries...)

» each request must beidempotent.

* NFSemploysthis.

43



Client

Time

NFS Stateless V3 & Stateful V4

LOOKUP

Server

-

' Lookup name
‘_.»

“} Read file data
‘_,-—

(@)

Reading data from afilein NFS version 3.

Client

Time

Server

LOOKUP
OPEN
READ

-~

'\
;. Lookup name

-

'+ Open file
"\ Read file data
‘_/

(b)

Reading data using a compound procedure in version 4.

44



Other Case Studies

45



Andrew File System (AFS)

46



AFS

e Developed at Carnegie Mdlon University starting in
1984

e Design goal isscalability

47



AFS —overview

%l\

/ bli\ /C mi\
N




AFS - transparency

e Access transparency

- art et v |

 Location independency
— Global name space (/cmu)
— Fileidentifier:

— File/cmu/foo located at machine A can be moved to machine B
— A volume location map is replicated at each server

49



AFS — scalability

e Scalability is achieved through
— Whole-file serving
* Entirefiles are transmitted to clients (64 KB blocks)

— Whole-file caching
e Largedisk cache

— Clustering

50



AFS — caching

Validation of cache entriesis done locally

Servers|ob to invalidate clients cache entries (makes server
stateful)

Invalidation is done through callbacks.

Calbacks areinitially set up for al filesin client cache. If
modification to afile occur from another client the server
breaks the callback. If callback exist a cache entry isvalid.

o1



AFS — update semantics

e Session semantics

e Successful open

— latest(F,S) or
(lostCallback(S,T) and inCache(F) and latest(F,S,T))

— lostCallback(S,T) = A callback from the server has been lost
during the last T seconds

— T istypicaly 10 minutes

52



AFS — conclusion

Session semantics
Scalable

L ocation independency
Stateful server

Consistency issues

— Two simultaneous writes to the same position in afile. Former writeis
not present after latter write.

Replication of read-only files

53



Coda

94



Coda

Descendent of AFS
Developed at Carnegie Méelon University since 1987

Primary design goal 1s constant data availability

— Achieved through

o Server replication
» Disconnected operation

55



Coda— overview

A volumeisreplicated at a set of servers (volume
storage group, V SG)

« Each Venus process has access to a subset of VSG
(avallable VSG, AV SG)

e Each Venus process has a preferred server in AV SG.

56



Overview of Coda (1)

eeeee

 Theoverall organization of AFS.




Overview of Coda (2)

Virtue client machine

User User Venus
process process process

A A A 3
RPC client
stub

v 4

Local file : . !
: Virtual file system layer
system interface

% Local OS

N

Network

« Theinternal organization of aVirtue workstation.



Communication (1)

Cl_ien’g Server
application
A t ¢ A
Application-specific
RPC —_ Client | g protocol Server
side effect side effect
v /S "
RPC client < RPC protocol RPC server
stub stub

99



Communication (2)

Client Client

' Reply Invalidate Reply
Server Server
Invalidate Invalldatex /?epy
Client Client

e  Sending an invalidation message one at atime.
e  Sending invalidation messagesin parallél.

60



Naming

Naming inherited from server's name space

Client A Server ClientB
afs local oin okg afs
[ :,f——— \: ‘ f{ - \\\\ \
bin/ TV | i ] / \ Pkg
T QO O
5 A v 1[[
O RS

Exported directory Exported directory
mounted by client mounted by client

Network

* Clientsin Coda have access to a single shared name space.



File Identifiers

Volume
replication DB ‘ RVID | File handle

e

VID1,
VID2

File server

) 4
% Server| File handle

| >
Serveri @
~
File server
Volume

location DB V

| }_4@

The implementation and resolution of a Codafile identifier.

62



Sharing Filesin Coda

Session SA

Invalidate
Close

Cl
Open(WR) =€

Client

T Time —»

Session SB

* The transactional behavior in sharing filesin Coda.

63



Transactional Semantics

*File-associated data *Read? *Modified?
*File identifier *Yes *No
*Access rights *Yes *No

eLast modification time *Yes *Yes

File length *Yes *Yes

File contents *Yes *Yes

The metadata read and modified for a store session type in Coda.

64



Client Caching

Session S 4 Session S';\

ClientA T
Open(RD) Close
Invalidate
File f (callback break)
File f
Open(WR) Close

Client B e e

Session SB

 Theuseof local copieswhen opening asession in Coda.

65



Coda — update semantics

o Weaker than AFS semantic (not session
semantics)

 Successful open

— AV SG <> @ and (latest(F,AV SG) or
(lostCallback(AV SG,T) and inCache(F) and
latest(F, AV SG,T))) or
(AV SG = @ and incache(F))

— lostCallback(AV SG,T) = A callback from the server
has been lost during the last T seconds

— T istypicaly 10 minutes

66



Coda — disconnected operation

Disconnected users can operate on files in their cache

Can specify alist of fileswhich Venuswill try to keep in
cache at all times

Serversin VSG\AV SG are periodically polled

Modified files are automatically transferred to preferred
Server upon reconnection

67



Disconnected Operation

The state-transition diagram of a Coda client with respect to a volume.

HOARDING

Reintegration
Disconnection completed

y

g EMULATION)\_}EINTEGRATIO@

Reconnection

Disconnection

68



Coda - conflicts

Coda Version Vectors (CVV) are used to detect conflicts

Each file hasa CVV associated with it

Example: 3 serversand 2 clients
— Two partitions { S1,52,C1} and { S3,C2}
— Initialy CVV is(1,1,1)
— Clupdatesfile 2 (2,2,1)
— C2 updatesfile =2 (1,1,3)
— When the partitions merge we have a conflict because neither
CVV 3 CVV,nor CVV, 3 CVV
Automatic conflict detection
— Some directory conflicts can be automatically resolved

69



Coda— server replication

» Upon close modifications propagate to AV SG with
multiRPC (multicast)

» All servers are contacted when opening afile to make
sure the preferred server has the latest copy and that all
replicasarein sync

e 50, clients are responsible for server replication

70



Server Replication

* Two clientswith different AV SG for the same replicated file.

Ha o

Broken
hetwork

Client
A

Client
B

71



Access Control 1n Coda

*Operation | eDescription

*Read *Read any file in the directory
*Write *Modify any file in the directory
sLookup sLook up the status of any file
sInsert *Add a new file to the directory
Delete *Delete an existing file
«Administer | Modify the ACL of the directory

Classification of file and directory operations recognized by

Coda with respect to access control.

72



Background Reading Material

NFS:
— rfc 1094 for v2 (3/1989)
— rfc 1813 for v3 (6/1995)
— rfc 3530 for v4 (4/2003)

AFS. “Scale and Performance in a Distributed File System”,
TOCS Feb 1988

— http://www-2.cs.cmu.edu/afs/cs/project/coda-
www/ResearchWebPages/docdir/s11.pdf

“Sprite”: “Caching in the Sprite Network File Systems’, TOCS

Feb 1988
— http://www.cs.berkeley.edu/projects/sprite/papers/caching.ps

73



More Reading Material

e CIFS gpec:

 CODA file system:

 RPCrelated RFCs,
— XDR representation: RFC 1831
— RPC: RFCS 1832
— RPC security: RFC 2203

74



Spare Slides

75



What Distributed File System Provides

 Provide accesses to date stored at servers using file system
Interfaces

 What are the file system interfaces?
— Open afile, check status on afile, close afile;
— Read datafrom afile;
— Write datato afile;
— Lock afile or part of afile;
— List filesin adirectory, delete adirectory;
— Delete afile, rename afile, add asymlink to afile;
— €lc;

76



Buzz Words; NAS vs SAN

NAS SAN
Access Methods File access Disk block access
Access Medium Ethernet Fiber Channd and Ethernet

Transport Protocol

Layer over TCP/IP

SCSI/FC and SCSI/IP

Efficiency Less More

Sharing and Access

Control Good Poor

Integrity demands Strong Very strong
Clients Workstations Database servers

77




NFS

A specification for adistributed file system (by Sun,
1984)

mplemented on various OS's

De facto standard in the UNIX community
_atest version is 4 (2000, RFC3010)
Client-server file system

78



NFS Client Server Interactions

e Client machine

— Application - nfs_vnops-> nfs client code -> rpc client
Interface

e Server machine

— rpc server interface = nfsserver code - ufs vops-> ufs
code -> disks

79



Client Caching (1)

Memory O Client
cache application

1
!

NFS server

T
‘L j‘

Network

e Client-side caching in NFS.

80



NFS V4 Delegation

1. Client asks for file

Client S
N ~ 2. Server delegates file Sver

Local copy

3. Server recalls delegation

| Updated file

4. Client sends returns file

« Using the NFS version 4 callback mechanism to recall file delegation.



Client

Time

XID = 1234

T

XID = 1234

/4

reply

(a)

RPC Fallures

Server

-
.

s
Y
| process
| request

; Cache

=

Client

Time

XID=1234

XID =1234

P=———)

(b)

Server

Client Server
XID=1234
reply is lost ‘,;"{
4| ~4Cache
XID =1234 Erj
Tii'le 4
/

. Three situations for handling retransmissions.
. Therequest isstill in progress

. The reply has just been returned
. The reply has been some time ago, but was lost.

(©)

82



Replication

Reasons:

— Increase reliability

— Improve availability

— balance the servers workload

how to make replication transparent (Fig. 13-12)

how to keep the replicas consistent

— Problems -- mainly with updates
1 areplicais not updated due to its server failure
2 network partitioned
Replication Management:
1 weighted vote for read and write

2 current synchronization site for each file group to
control access

83



Semantics of File Sharing (1)

On a single processor, when aread
follows awrite, the value returned by the
read is the value just written.

In a distributed system with caching,
obsol ete values may be returned.

Original file
Single machine J

‘ab

Process
EN
‘a blc
Process
B
Y

1. Write "¢" 2. Read gets "abc"

(@)

Client machine #1

‘ alb q\
Progess \
E/4

2 Write "¢" 1. Read "ab"

File server

3. Read gets "ab"

Client machine #2

‘a b «
Process
B




Semantics of File Sharing (2)

Method

Comment

*UNIX semantics

*Every operation on a file is instantly visible to all processes

*Session semantics

*No changes are visible to other processes until the file is closed

mmutable files

*No updates are possible; simplifies sharing and replication

*Transaction

*All changes occur atomically

» Four ways of dealing with the shared filesin a distributed system.

85




NFS vs AFS: Name-Space

 NFS: per-client linkage
— Server: export /root/fsl/
— Client: mount server:/root/fsl /fsl - fhandle

* AFS: global name space

— Name space is organized into Volumes
» Global directory /efs,
» /afs/cs.wisc.edu/voll/...; /afs/cs.stanfod.edu/vol 1/...

— Eachfileisidentified as<vol id, vnode#, vhode gen>

— All AFS servers keep a copy of “volume location database”, whichisa
table of vol id-> server_ip mappings

86



NFSvs AFS:. Implications for
L ocation Transparency

 NFS: no transparency
— If adirectory is moved from one server to another, client must remount

e AFS: transparency

— If avolume is moved from one server to another, only the volume
location database on the servers needs to be updated

— Implementation of volume migration
— Filelookup efficiency

* Arethere other ways to provide location transparency?

87



File System Model

*Operation v3 v4 *Description

«Create *Yes *No *Create a regular file

«Create *No *Yes *Create a nonregular file

sLink *Yes *Yes *Create a hard link to a file

*Symlink *Yes *No *Create a symbolic link to a file

*Mkdir *Yes *No *Create a subdirectory in a given directory
*Mknod *Yes *No *Create a special file

*Rename *Yes *Yes *Change the name of a file

*Rmdir *Yes *No *Remove an empty subdirectory from a directory
*Open *No *Yes *Open a file

*Close *No *Yes *Close a file

sLookup *Yes *Yes *Look up a file by means of a file name
*Readdir *Yes *Yes *Read the entries in a directory

*Readlink *Yes *Yes *Read the path name stored in a symbolic link
*Getattr *Yes *Yes *Read the attribute values for a file

*Setattr *Yes *Yes *Set one or more attribute values for a file
*Read *Yes *Yes *Read the data contained in a file

*Write *Yes *Yes *Write data to a file

 Anincomplete list of file system operations supported by NFS.

88




File Attributes (1)

*Attribute *Description

*TYPE *The type of the file (regular, directory, symbolic link)

*SIZE *The length of the file in bytes

*CHANGE Indicator for a client to see if and/or when the file has changed
*FSID «Server-unique identifier of the file's file system

o Some general mandatory file attributes in NFS.

89




File Attributes (2)

*Attribute

*Description

*ACL

ean access control list associated with the file

*FILEHANDLE

*The server-provided file handle of this file

*FILEID

*A file-system unique identifier for this file

*FS_LOCATIONS

sLocations in the network where this file system may be found

*OWNER

*The character-string name of the file's owner

TIME_ACCESS

*Time when the file data were last accessed

*TIME_MODIFY

*Time when the file data were last modified

*TIME_CREATE

*Time when the file was created

o Some general recommended file attributes.

90




Client

‘ Virtual file system layer

v

Access
control
Y
Local file .
system interface NFS client
RPC client
stub

Security

Server

‘ Virtual file system layer

Secure channel

* The NFS security architecture.

A v
Access
control

Local file
NFS server system interface
RPC server
stub

91




Secure RPCs

Client machine

NFS client
|
RPC client stub

|
RPCSEC_GSS

|
GSS-API

LIPKEY —
Other

Kerberos H

[T

Server machine

NFS server

RPC server stub

RPCSEC_GSS

GSS-API

LIPKEY

Kerberos H

Other

]

Network

e Secure RPC in NFSversion 4.

92



NFS Access Control

*Operation eDescription
*Read_data <Permission to read the data contained in a file
*Write_data *Permission to to modify a file's data

*Append_data

*Permission to to append data to a file

*Execute

*Permission to to execute a file

eList_directory

<Permission to to list the contents of a directory

*Add_file

*Permission to to add a new file t50 a directory

*Add_subdirectory

*Permission to to create a subdirectory to a directory

*Delete *Permission to to delete a file

*Delete_child <Permission to to delete a file or directory within a directory
*Read_acl *Permission to to read the ACL

*Write_acl *Permission to to write the ACL

*Read_attributes

*The ability to read the other basic attributes of a file

*Write_attributes

<Permission to to change the other basic attributes of a file

*Read_named_attrs

*Permission to to read the named attributes of a file

*Write_named_attrs

*Permission to to write the named attributes of a file

*Write_owner

<Permission to to change the owner

*Synchronize

<Permission to to access a file locally at the server with synchronous reads and writes

The classification of operations recognized by NFS with respect to access control.

93




NFS Access Control

*Type of user

eDescription

*Owner *The owner of afile
*Group *The group of users associated with a file
*Everyone *Any user of a process

e[nteractive

*Any process accessing the file from an interactive terminal

*Network *Any process accessing the file via the network

: *Any process accessing the file through a dialup connection to the
*Dialup

server

*Batch *Any process accessing the file as part of a batch job
*Anonymous *Anyone accessing the file without authentication
*Authenticated *Any authenticated user of a process
*Service *Any system-defined service process

The various kinds of users and processes distinguished by NFS with

respect to access control.

94



Secure Channelsin Coda

 Mutua authentication in RPC2.

’
A KygRp) >
<« 2Ky e(Ra* 1. Rp)
L ’ o)
O o)
<. 3 o0
Kag®p+) >
*KapKg)
o AB\™S




Secure Channelsin Coda

1
K o (ST), Ko(RH) >
< 2 TKa(Ra+1, Rp)
o s\ika™l. Rp 5
O o)
<L M
> TKs (Rg+1) >
« K (Koy)

o Setting up a secure channel between a (Venus) client
and aVice server in Coda.



