
1

Distributed File Systems

Jonathan Walpole
CSE515 Distributed Computing Systems

2

Design Issues

• Naming and name resolution
• Architecture and interfaces
• Caching strategies and cache consistency
• File sharing semantics
• Disconnected operation and fault tolerance

3

Naming Files

4

Transparency Issues

• Can clients distinguish between local and remote files?

• Location transparency
– file name does not reveal the file's physical storage location.

• Location independence
– the file name does not need to be changed when the file's physical

storage location changes.

5

Global vs Local Name Spaces

• Global name space
– file names are globally unique
– any file can be named from any node

• Local name spaces
– remote files must be inserted in the local name space
– file names are only meaningful within the calling node
– how do you refer to remote files in order to insert them?
– globally unique file handles can be used to map remote files to local

names

6

How to Build a Name Space?

• Super-root / machine name approach
– concatenate the host name to the names of files stored on that host
– system-wide uniqueness guaranteed
– simple to located a file
– not location transparent or location independent

• Mounting remote file systems
– exported remote directory is imported and mounted onto local directory
– accesses require a globally unique file handle for the remote directory
– once mounted, file names are location-transparent

• location can be captured via naming conventions
– are they location independent?

• location of file vs location of client?
• files have different names from different places

7

Local Name Spaces with Mounting

• Mounting (part of) a remote file system in NFS.

8

NSF Name Space

• Server exports a directory

• mountd: provides a unique file handle for the exported directory

• Client uses RPC to issue nfs_mount request to server

• mountd receives the request and checks whether
– the pathname is a directory?
– the directory is exported to this client?

9

NFS File Handles

• V-node contains
– reference to a file handle for mounted remote files
– reference to an i-node for local files

• File handle uniquely names a remote directory
– file system identifier: unique number for each file system (in UNIX super block)
– i-node and i-node generation number

v-node
i-nodeFile handle

File System identifier i-node
i-node generation

number

10

Nested Mounting on Multiple Servers

11

NFS Pathname Translation
Across Mount Points

12

NFS Pathname Translation
Across Mount Points

• Is done iteratively by client
• Example: /usr/local/dir1/myfile

– Lookup(/ I-node, usr) à /usr I-node
– Lookup(/usr I-node, local) à /usr/local file handle

• Server 1 is contacted

– Lookup(/usr/local file handle, dir1) à /usr/local/dir1 file handle
• Server 2 is contacted

– Lookup(/usr/local/dir1 file handle, myfile) à /usr/local/dir1/myfile
file handle

• Server 2 is contacted

• Server 1 cannot lookup dir1 for client because dir1 is
something else on server 1 than on client

• Lookups are cached

13

Mounting On-Demand

• Need to decide where and when to mount remote directories
• Where? - Can be based on conventions to standardize local

name spaces (ie., /home/username for user home directories)
• When? - boot time, login time, access time, …?
• What to mount when?

– How long does it take to mount everything?
– Do we know what everything is?
– Can we do mounting on-demand?

14

Automounting

• An automounter is a client-side process that handles on-demand
mounting
– it acts like a local NFS server

• Intercepts accesses to unmounted remote directories (/home)
– accesses to /home go to local automounter
– /home/walpole causes automounter to create local directory

/home/walpole and mount remote directory /users/walpole there

• Overhead of automounter indirection?
– Takes itself out of the loop by mounting remote /users/walpole under

/tmp_mnt/home/walpole and making /home/walpole a symbolic link to it

15

Automounting in NSF

16

Using Symbolic Links with Automounting

17

Architecture and Interfaces

18

Local Access Architectures

• Local access approach
– move file to client
– local access on client
– return file to server
– data shipping approach

19

Remote Access Architectures

• Remote access
– leave file on server
– send read/write operations to

server
– return results to client
– function shipping approach

20

File vs Block-Level Interface

• File-level client-server interface
– local access model with whole file movement and caching
– remote access model client-server interface at system call

level
– client performs remote open, read, write, close calls

• Block-level client-server interface
– client-server interface at file system or disk block level
– server offers virtual disk interface
– client file accesses generate block access requests to server
– block-level caching of parts of files on client

21

Hybrid Approaches

• Remote file operations
• Client-side caching of blocks

22

Distributed File System Architectures

• Server side
– how do servers export files
– how do servers handle requests from clients?

• Client side
– how do applications access a remote file in the same way as a local file?

• Communication layer
– how do clients and servers communicate?

23

NFS Architecture

• The basic NFS architecture for UNIX systems.

24

NFS Server Side

• Mountd
– server exports directory via mountd
– mountd provides the initial file handle for the exported directory
– client issues nfs_mount request via RPC to mountd
– mountd checks if the pathname is a directory and if the directory is

exported to the client

• nfsd: services NFS RPC calls, gets the data from its local file
system, and replies to the RPC
– Usually listening at port 2049

• Both mountd and nfsd use RPC

25

Communication Layer: NFS RPC Calls

• NFS / RPC uses XDR and TCP/IP
• fhandle: 64-byte opaque data (in NFS v3)

– what’s in the file handle?

status, fattrfhandle, offset, count, datawrite

status, fhandle, fattrdirfh, name, fattrcreate

status, fattr, datafhandle, offset, countread

status, fhandle, fattrdirfh, namelookup

ResultsInput argsProc.

26

NFS File Handles

• V-node contains
– reference to a file handle for mounted remote files
– reference to an i-node for local files

• File handle uniquely names a remote directory
– file system identifier: unique number for each file system (in UNIX super block)
– i-node and i-node generation number

v-node
i-nodeFile handle

File System identifier i-node
i-node generation

number

27

NFS Client Side

• Accessing remote files in the same way as accessing
local files requires kernel support
– Vnode interface

read(fd,..) struct file

Mode
Vnode
offset

V_data

fs_op

struct vnode

{int (*open)();
 int (*close)();
 int (*read)();
 int (*write)();
 int (*lookup)();
 …
 }

process
file table

28

Caching

29

Caching vs Pure Remote Service

• Network traffic?
– caching reduces remote accesses ⇒ reduces network traffic
– caching generates fewer, larger, data transfers

• Server load?
– caching reduces remote accesses ⇒ reduces server load

• Server disk throughput?
– optimized better for large requests than random disk blocks

• Data integrity?
– cache-consistency problem due to frequent writes

• Operating system complexity?
– simpler for remote service.

30

Caching

• Four places to store files
– Server’s disk: slow performance
– Server’s memory

• cache management, how much to cache, replacement strategy
• still slow due to network delay

– Client’s disk
• access speed vs server memory?
• large files can be cached
• supports disconnected operation

– Client’s memory
• fastest access
• can be used by diskless workstations
• competes with the VM system for physical memory space

31

Cache Consistency

– Reflecting changes to local cache to master copy
– Reflecting changes to master copy to local caches

update/invalidate

Copy 1

Copy 2

Master copy

write

32

Common Update Algorithms for Client Caching

• Write-through: all writes are carried out immediately
– Reliable: little information is lost in the event of a client crash
– Slow: cache not useful for writes

• Delayed-write: writes do not immediately propagate to server
– batching writes amortizes overhead
– wait for blocks to fill
– if data is written and then deleted immediately, data need not be written

at all (20-30 % of new data is deleted with 30 secs)

• Write-on-close: delay writing until the file is closed at the client
– semantically meaningful delayed-write policy
– if file is open for short duration, works fine
– if file is open for long, susceptible to losing data in the event of client

crash

33

Cache Coherence

• How to keep locally cached data up to date / consistent?
• Client-initiated approach

– check validity on every access: too much overhead
– first access to a file (e.g., file open)
– every fixed time interval

• Server-initiated approach
– server records, for each client, the (parts of) files it caches
– server responds to updates by propagation or invalidation

• Disallow caching during concurrent-write or read/write sharing
– allow multiple clients to cache file for read only access
– flush all client caches when the file is opened for writing

34

NFS – Server Caching

• Reads
– use the local file system cache
– prefetching in UNIX using read-ahead

• Writes
– write-through (synchronously, no cache)
– commit on close (standard behaviour in v4)

35

NFS – Client Caching (reads)

• Clients are responsible for validating cache entries
(stateless server)

• Validation by checking last modification time
– time stamps issues by server
– automatic validation on open (with server??)

• A cache entry is considered valid if one of the following
are true:
– cache entry is less than t seconds old (3-30 s for files, 30-60 s for

directories)
– modified time at server is the same as modified time on client

36

NFS – Client Caching (writes)

• Delayed writes
– modified files are marked dirty and flushed to server on close (or sync)

• Bio-daemons (block input-output)
– read-ahead requests are done asynchronously
– write requests are submitted when a block is filled

37

File Sharing Semantics

38

Consistency Semantics for File Sharing

• What value do reads see after writes?
• UNIX semantics

– value read is the value stored by last write
– writes to an open file are visible immediately to others with the file open
– easy to implement with one server and no cache

• Session semantics
– writes to an open file are not visible immediately to others with the file

opened already
– changes become visible on close to sessions started later

• Immutable-Shared-Files semantics
– A sharable file cannot be modified
– File names cannot be reused and its contents may not be altered
– Simple to implement.

• Transactions
– All changes have all-or-nothing property
– W1,R1,R2,W2 not allowed where P1 = W1;W2 and P2 = R1;R2

39

NFS – File Sharing Semantics

• Not UNIX semantics!
• Unspecified in NFS standard
• Not clear because of timing dependencies
• Consistency issues can arise

– Example: Jack and Jill have a file cached. Jack opens the file and
modifies it, then he closes the file. Jill then opens the file (before t
seconds have elapsed) and modifies it as well. Then she closes the
file. Are both Jack’s and Jill’s modifications present in the file?
What if Jack closes the file after Jill opens it?

• Locking part of v4 (byte range, leasing)

40

File Locking in NFS

• NFS version 4 operations related to file locking.

•Renew the lease on a specified lock•Renew

•Remove a lock from a range of bytes•Locku

•Test whether a conflicting lock has been granted•Lockt

•Creates a lock for a range of bytes•Lock

•Description•Operation

41

File Locking in NFS

• The result of an open operation with share reservations in NFS.
• When the client requests shared access given the current denial state.
• When the client requests a denial state given the current file access state.

•Succeed•Succeed•Fail•Succeed•READ

•Succeed•Fail•Succeed•Succeed•WRITE

•Fail•Succeed•Succeed•Succeed•BOTH

•BOTH•WRITE•READ•NONE

Requested file denial state

•Fail•Succeed•Succeed•Succeed•BOTH

•Succeed•Fail•Succeed•Succeed•WRITE

•Succeed•Succeed•Fail•Succeed•READ

•BOTH•WRITE•READ•NONE

Current file denial state

Request
access

Current
access
state

42

Fault Tolerance

43

Stateful versus Stateless Service

• Two approaches to server-side information
1 stateful file server

• a client performs open on a file
• the server keeps file information (e.g., file descriptor entry, offset)
• Adv: increased performance
• On server crash, it looses all its volatile state information
• On client crash, the server needs to know to claim state space

2 stateless file server -- each request is self-contained
• each request identifies the file, the position, read/write.
• server failure is identical to slow server (client retries...)
• each request must be idempotent.
• NFS employs this.

44

NFS Stateless V3 & Stateful V4

• Reading data from a file in NFS version 3.
• Reading data using a compound procedure in version 4.

45

Other Case Studies

46

Andrew File System (AFS)

47

AFS

• Developed at Carnegie Mellon University starting in
1984

• Design goal is scalability

48

AFS – overview

Kernel

Venus

Kernel

Vice
File system call

cmu

/

bin

49

• Access transparency
– API same as for UNIX

• Location independency
– Global name space (/cmu)
– File identifier:

– File /cmu/foo located at machine A can be moved to machine B
– A volume location map is replicated at each server

AFS - transparency

Volume number File handle Uniquifier

50

AFS – scalability

• Scalability is achieved through
– Whole-file serving

• Entire files are transmitted to clients (64 KB blocks)

– Whole-file caching
• Large disk cache

– Clustering

51

AFS – caching

• Validation of cache entries is done locally
• Servers job to invalidate clients cache entries (makes server

stateful)
• Invalidation is done through callbacks.
• Callbacks are initially set up for all files in client cache. If

modification to a file occur from another client the server
breaks the callback. If callback exist a cache entry is valid.

52

AFS – update semantics

• Session semantics
• Successful open

– latest(F,S) or
(lostCallback(S,T) and inCache(F) and latest(F,S,T))

– lostCallback(S,T) = A callback from the server has been lost
during the last T seconds

– T is typically 10 minutes

53

AFS – conclusion

• Session semantics
• Scalable
• Location independency
• Stateful server
• Consistency issues

– Two simultaneous writes to the same position in a file. Former write is
not present after latter write.

• Replication of read-only files

54

Coda

55

Coda

• Descendent of AFS
• Developed at Carnegie Mellon University since 1987
• Primary design goal is constant data availability

– Achieved through
• Server replication
• Disconnected operation

56

Coda – overview

• A volume is replicated at a set of servers (volume
storage group, VSG)

• Each Venus process has access to a subset of VSG
(available VSG, AVSG)

• Each Venus process has a preferred server in AVSG.

57

Overview of Coda (1)

• The overall organization of AFS.

58

Overview of Coda (2)

• The internal organization of a Virtue workstation.

59

Communication (1)

• Side effects in Coda's RPC2 system.

60

Communication (2)

• Sending an invalidation message one at a time.
• Sending invalidation messages in parallel.

61

Naming

• Clients in Coda have access to a single shared name space.

62

File Identifiers

• The implementation and resolution of a Coda file identifier.

63

Sharing Files in Coda

• The transactional behavior in sharing files in Coda.

64

Transactional Semantics

• The metadata read and modified for a store session type in Coda.

•Yes•Yes•File contents

•Yes•Yes•File length

•Yes•Yes•Last modification time

•No•Yes•Access rights

•No•Yes•File identifier

•Modified?•Read?•File-associated data

65

Client Caching

• The use of local copies when opening a session in Coda.

66

Coda – update semantics

• Weaker than AFS semantic (not session
semantics)

• Successful open
– AVSG <> Ø and (latest(F,AVSG) or

(lostCallback(AVSG,T) and inCache(F) and
latest(F,AVSG,T))) or
(AVSG = Ø and incache(F))

– lostCallback(AVSG,T) = A callback from the server
has been lost during the last T seconds

– T is typically 10 minutes

67

Coda – disconnected operation

• Disconnected users can operate on files in their cache
• Can specify a list of files which Venus will try to keep in

cache at all times
• Servers in VSG\AVSG are periodically polled
• Modified files are automatically transferred to preferred

server upon reconnection

68

Disconnected Operation

• The state-transition diagram of a Coda client with respect to a volume.

69

Coda - conflicts

• Coda Version Vectors (CVV) are used to detect conflicts
• Each file has a CVV associated with it
• Example: 3 servers and 2 clients

– Two partitions {S1,S2,C1} and {S3,C2}
– Initially CVV is (1,1,1)
– C1 updates file à (2,2,1)
– C2 updates file à (1,1,3)
– When the partitions merge we have a conflict because neither

CVVC1 ≥ CVVC2 nor CVVC2 ≥ CVVC1

• Automatic conflict detection
– Some directory conflicts can be automatically resolved

70

Coda – server replication

• Upon close modifications propagate to AVSG with
multiRPC (multicast)

• All servers are contacted when opening a file to make
sure the preferred server has the latest copy and that all
replicas are in sync

• So, clients are responsible for server replication

71

Server Replication

• Two clients with different AVSG for the same replicated file.

72

Access Control in Coda

• Classification of file and directory operations recognized by
Coda with respect to access control.

•Modify the ACL of the directory•Administer

•Delete an existing file•Delete

•Add a new file to the directory•Insert

•Look up the status of any file•Lookup

•Modify any file in the directory•Write

•Read any file in the directory•Read

•Description•Operation

73

Background Reading Material

• NFS:
– rfc 1094 for v2 (3/1989)
– rfc 1813 for v3 (6/1995)
– rfc 3530 for v4 (4/2003)

• AFS: “Scale and Performance in a Distributed File System”,
TOCS Feb 1988
– http://www-2.cs.cmu.edu/afs/cs/project/coda-

www/ResearchWebPages/docdir/s11.pdf

• “Sprite”: “Caching in the Sprite Network File Systems”, TOCS
Feb 1988
– http://www.cs.berkeley.edu/projects/sprite/papers/caching.ps

74

More Reading Material

• CIFS spec:
– http://www.itl.ohiou.edu/CIFS-SPEC-0P9-REVIEW.pdf

• CODA file system:
– http://www-2.cs.cmu.edu/afs/cs/project/coda/Web/docdir/s13.pdf

• RPC related RFCs:
– XDR representation: RFC 1831
– RPC: RFCS 1832
– RPC security: RFC 2203

75

Spare Slides

76

What Distributed File System Provides

• Provide accesses to date stored at servers using file system
interfaces

• What are the file system interfaces?
– Open a file, check status on a file, close a file;
– Read data from a file;
– Write data to a file;
– Lock a file or part of a file;
– List files in a directory, delete a directory;
– Delete a file, rename a file, add a symlink to a file;
– etc;

77

Buzz Words: NAS vs SAN

Very strongStrongIntegrity demands

PoorGood
Sharing and Access
Control

MoreLessEfficiency

Database serversWorkstationsClients

SCSI/FC and SCSI/IPLayer over TCP/IPTransport Protocol

Fiber Channel and EthernetEthernetAccess Medium

Disk block accessFile accessAccess Methods

SANNAS

78

NFS

• A specification for a distributed file system (by Sun,
1984)

• Implemented on various OS’s
• De facto standard in the UNIX community
• Latest version is 4 (2000, RFC3010)
• Client-server file system

79

NFS Client Server Interactions

• Client machine
– Application à nfs_vnops-> nfs client code -> rpc client

interface

• Server machine
– rpc server interface à nfs server code à ufs_vops -> ufs

code -> disks

80

Client Caching (1)

• Client-side caching in NFS.

81

NFS V4 Delegation

• Using the NFS version 4 callback mechanism to recall file delegation.

82

RPC Failures

• Three situations for handling retransmissions.
• The request is still in progress
• The reply has just been returned
• The reply has been some time ago, but was lost.

83

Replication

• Reasons:
– Increase reliability
– improve availability
– balance the servers’ workload

• how to make replication transparent (Fig. 13-12)
• how to keep the replicas consistent

– Problems -- mainly with updates
1 a replica is not updated due to its server failure
2 network partitioned

• Replication Management:
1 weighted vote for read and write
2 current synchronization site for each file group to

control access

84

Semantics of File Sharing (1)
• On a single processor, when a read

follows a write, the value returned by the
read is the value just written.

• In a distributed system with caching,
obsolete values may be returned.

85

Semantics of File Sharing (2)

• Four ways of dealing with the shared files in a distributed system.

•All changes occur atomically•Transaction

•No updates are possible; simplifies sharing and replication•Immutable files

•No changes are visible to other processes until the file is closed•Session semantics

•Every operation on a file is instantly visible to all processes•UNIX semantics

•Comment•Method

86

NFS vs AFS: Name-Space

• NFS: per-client linkage
– Server: export /root/fs1/
– Client: mount server:/root/fs1 /fs1 à fhandle

• AFS: global name space
– Name space is organized into Volumes

• Global directory /afs;
• /afs/cs.wisc.edu/vol1/…; /afs/cs.stanfod.edu/vol1/…

– Each file is identified as <vol_id, vnode#, vnode_gen>
– All AFS servers keep a copy of “volume location database”, which is a

table of vol_idà server_ip mappings

87

NFS vs AFS: Implications for
Location Transparency

• NFS: no transparency
– If a directory is moved from one server to another, client must remount

• AFS: transparency
– If a volume is moved from one server to another, only the volume

location database on the servers needs to be updated
– Implementation of volume migration
– File lookup efficiency

• Are there other ways to provide location transparency?

88

File System Model

• An incomplete list of file system operations supported by NFS.

•Write data to a file•Yes•Yes•Write

•Read the data contained in a file•Yes•Yes•Read

•Set one or more attribute values for a file•Yes•Yes•Setattr

•Read the attribute values for a file•Yes•Yes•Getattr

•Read the path name stored in a symbolic link•Yes•Yes•Readlink

•Read the entries in a directory•Yes•Yes•Readdir

•Look up a file by means of a file name•Yes•Yes•Lookup

•Close a file•Yes•No•Close

•Open a file•Yes•No•Open

•Remove an empty subdirectory from a directory•No•Yes•Rmdir

•Change the name of a file•Yes•Yes•Rename

•Create a special file•No•Yes•Mknod

•Create a subdirectory in a given directory•No•Yes•Mkdir

•Create a symbolic link to a file•No•Yes•Symlink

•Create a hard link to a file•Yes•Yes•Link

•Create a nonregular file•Yes•No•Create

•Create a regular file•No•Yes•Create

•Description•v4•v3•Operation

89

File Attributes (1)

• Some general mandatory file attributes in NFS.

•Server-unique identifier of the file's file system•FSID

•Indicator for a client to see if and/or when the file has changed•CHANGE

•The length of the file in bytes•SIZE

•The type of the file (regular, directory, symbolic link)•TYPE

•Description•Attribute

90

File Attributes (2)

• Some general recommended file attributes.

•Time when the file was created•TIME_CREATE

•Time when the file data were last modified•TIME_MODIFY

•Time when the file data were last accessed•TIME_ACCESS

•The character-string name of the file's owner•OWNER

•Locations in the network where this file system may be found•FS_LOCATIONS

•A file-system unique identifier for this file•FILEID

•The server-provided file handle of this file•FILEHANDLE

•an access control list associated with the file•ACL

•Description•Attribute

91

Security

• The NFS security architecture.

92

Secure RPCs

• Secure RPC in NFS version 4.

93

NFS Access Control

• The classification of operations recognized by NFS with respect to access control.

•Permission to to access a file locally at the server with synchronous reads and writes•Synchronize

•Permission to to change the owner•Write_owner

•Permission to to write the named attributes of a file•Write_named_attrs

•Permission to to read the named attributes of a file•Read_named_attrs

•Permission to to change the other basic attributes of a file•Write_attributes

•The ability to read the other basic attributes of a file•Read_attributes

•Permission to to write the ACL•Write_acl

•Permission to to read the ACL•Read_acl

•Permission to to delete a file or directory within a directory•Delete_child

•Permission to to delete a file•Delete

•Permission to to create a subdirectory to a directory•Add_subdirectory

•Permission to to add a new file t5o a directory•Add_file

•Permission to to list the contents of a directory•List_directory

•Permission to to execute a file•Execute

•Permission to to append data to a file•Append_data

•Permission to to modify a file's data•Write_data

•Permission to read the data contained in a file•Read_data

•Description•Operation

94

NFS Access Control

• The various kinds of users and processes distinguished by NFS with
respect to access control.

•Any system-defined service process•Service

•Any authenticated user of a process•Authenticated

•Anyone accessing the file without authentication•Anonymous

•Any process accessing the file as part of a batch job•Batch

•Any process accessing the file through a dialup connection to the
server

•Dialup

•Any process accessing the file via the network•Network

•Any process accessing the file from an interactive terminal•Interactive

•Any user of a process•Everyone

•The group of users associated with a file•Group

•The owner of a file•Owner

•Description•Type of user

95

Secure Channels in Coda

• Mutual authentication in RPC2.

96

Secure Channels in Coda

• Setting up a secure channel between a (Venus) client
and a Vice server in Coda.

