Distributed Shared Memory

Jonathan Walpole

Department of Computer Science & Engineering
OGI/OHSU

Jonathan Walpole CSES515 - Distributed Computing Systems 1



The Basic Idea

multiple processes share a single virtual memory space
processes do loads/stores from/to memory locations
pages may be resident (local) or non-resident (& remote)
accesses to non-resident pages generate page faults

page faults are handled by the OS and serviced by the DSM
middleware

perhaps by retrieving the page from another machine

protection faults can also be used by the DSM system to
Intercept “interesting” references to the shared memory

perhaps by invalidating pages on another machine

Jonathan Walpole CSES515 - Distributed Computing Systems 2



Characteristics

Inter-process communication is via modification and
subsequent reading of shared memory locations

semantics defined by memory consistency model and use of
synchronisation primitives

Local and remote communication looks the same

remote communication is hidden behind MMU faults that are handled
transparently to the application program

some memory accesses take (much) longer than others

analogy with cache misses on SMPs
Its like programming a shared memory multiprocessor
UMA vs NUMA vs NORMA architectures

Jonathan Walpole CSES515 - Distributed Computing Systems 3



Key Issues and Challenges

Performance
Memory consistency model

Implementation of synchronisation primitives

Jonathan Walpole CSES515 - Distributed Computing Systems 4



Performance

Minimum unit of communication is a page

Concurrent access to the same page by remote processes
causes thrashing

repeated page faults and transfer of the page
may not be accessing the same location on the page
thrashing can be reduced by temporarily pinning the page

but this increases access latency for the other process
Small pages reduce thrashing due to false sharing

but they increase management overhead and network overhead

Jonathan Walpole CSES515 - Distributed Computing Systems §



Performance

Performance is affected by the number of message
exchanges required to service a page fault

how to locate a page”?
how to invalidate copies of the page?

how to propagate updates to copies of pages?

The number of protection faults and message exchanges is
strongly influenced by

the memory consistency model

caching strategies

Jonathan Walpole CSES515 - Distributed Computing Systems g



Strong Memory Consistency

1 - ) 2|
MR TL”
N

Total order enforces sequential consistency (or linearizabillity if
real-time order is also preserved):

- intuitively simple for programmers, but very costly to implement

- not even implemented in non-distributed machines!

Jonathan Walpole CSES515 - Distributed Computing Systems 7



Cost of Implementing Strong Consistency

Centralized DSM systems
propagate all memory references to a well-known central server
central server serializes all requests to enforce strong consistency
all accesses are remote so performance sucks!

the central server is a bottleneck

Jonathan Walpole CSES515 - Distributed Computing Systems 8



Cost of Implementing Strong Consistency

Migrating DSM systems

allow pages to migrate among processors

pages are faulted in on first access

with the right locality of reference most accesses will be local and
few page migrations will be required

a single page is at a single location at any time so strong
consistency is ensured

no parallel read access for any given page

many read faults so performance sucks!

And anyway, how do you know where to look for the page
you want?

Jonathan Walpole CSES515 - Distributed Computing Systems Q



Cost of Implementing Strong Consistency

DSM systems with read-only page replication and central
server for writes

first read access faults and causes creation of local copy of page
subsequent read accesses are serviced from the local copy
write accesses fault and are coordinated by the central server

either write accesses are propagated via atomic broadcast to all
read-only copies, in which case write accesses are very expensive
so performance sucks!

or, write accesses cause invalidation of all read-only copies via
broadcast, in which case many more read faults occur and
performance sucks!

Doesn’t take advantage of locality for writes!

Jonathan Walpole CSES515 - Distributed Computing Systems 10



Cost of Implementing Strong Consistency

DSM systems with read-write replication and migration

read or write accesses create local “cached” copy of a page
cached pages can be read or written locally
strong consistency requires reads and writes to be serialized

maintain a single writable copy at the page “owner” and read-only
pages elswhere

migrate ownership and propagate updates or invalidations as before

So how do you find the owner of the page you want, or the
replicas to update or invalidate?

centralized vs decentralized location service?

use of broadcast protocols

Jonathan Walpole CSES515 - Distributed Computing Systems 11



What Do We Really Want?

Parallel reads

Parallel writes to different locations in a page
unless the programmer says they are related

Parallel reads and writes to different locations in a page
unless the programmer says they are related

Synchronization primitives to allow the programmer to
specify when requests are related

Local writes
writable copy located locally when writes occur

Prefetching / eager update via multicast on write completion

Jonathan Walpole CSES515 - Distributed Computing Systems 12



Release Consistency

Directives define boundaries of access to shared data

acquire - obtain updated copy

release - finished updating shared memory locations

Weak consistency semantics based on timing of the
propagation of updates

release consistency - updates propagated on release

lazy release consistency - updates propagated on subsequent
acquire

Release consistency makes the shared memory
sequentially consistent for programmers that use
synchronization primitives correctly

an optimized implementation of a strong consistency DSM?

Jonathan Walpole CSES515 - Distributed Computing Systems 13



Synchronization Primitives

Acquire and release are examples of synchronization
primitives for DSMs based on release consistency

they are explicit calls to the DSM system allowing it to manipulate
remote pages appropriately before completing the calls

What about locking primitives in strong consistency DSMs?
Test and set lock?
When exactly is a write fault triggered during TSL?
How is TSL implemented on an SMP?

Synchronization primitives need to implement cache invalidation and
use memory barriers on some architectures (depending on the
memory consistency model)

They need to be known to the DSM system

Jonathan Walpole CSES515 - Distributed Computing Systems 14



