
Jonathan Walpole CSE515 - Distributed Computing Systems 1

Distributed Shared Memory

Jonathan Walpole

Department of Computer Science & Engineering
OGI/OHSU



Jonathan Walpole CSE515 - Distributed Computing Systems 2

The Basic Idea

• multiple processes share a single virtual memory space

• processes do loads/stores from/to memory locations

• pages may be resident (local) or non-resident (& remote)

• accesses to non-resident pages generate page faults

• page faults are handled by the OS and serviced by the DSM
middleware

• perhaps by retrieving the page from another machine

• protection faults can also be used by the DSM system to
intercept “interesting” references to the shared memory

• perhaps by invalidating pages on another machine



Jonathan Walpole CSE515 - Distributed Computing Systems 3

Characteristics

• Inter-process communication is via modification and
subsequent reading of shared memory locations

• semantics defined by memory consistency model and use of
synchronisation primitives

• Local and remote communication looks the same

• remote communication is hidden behind MMU faults that are handled
transparently to the application program

• some memory accesses take (much) longer than others

• analogy with cache misses on SMPs

• Its like programming a shared memory multiprocessor

• UMA vs NUMA vs NORMA architectures



Jonathan Walpole CSE515 - Distributed Computing Systems 4

Key Issues and Challenges

• Performance

• Memory consistency model

• Implementation of synchronisation primitives



Jonathan Walpole CSE515 - Distributed Computing Systems 5

Performance

• Minimum unit of communication is a page

• Concurrent access to the same page by remote processes
causes thrashing

• repeated page faults and transfer of the page

• may not be accessing the same location on the page

• thrashing can be reduced by temporarily pinning the page

• but this increases access latency for the other process

• Small pages reduce thrashing due to false sharing

• but they increase management overhead and network overhead



Jonathan Walpole CSE515 - Distributed Computing Systems 6

Performance

• Performance is affected by the number of message
exchanges required to service a page fault

• how to locate a page?

• how to invalidate copies of the page?

• how to propagate updates to copies of pages?

• The number of protection faults and message exchanges is
strongly influenced by

• the memory consistency model

• caching strategies



Jonathan Walpole CSE515 - Distributed Computing Systems 7

Strong Memory Consistency

P1

P2

P3

P4

W1

W2

W3

W4

R2

R1

Total order enforces sequential consistency (or linearizability if
real-time order is also preserved):

- intuitively simple for programmers, but very costly to implement

- not even implemented in non-distributed machines!



Jonathan Walpole CSE515 - Distributed Computing Systems 8

Cost of Implementing Strong Consistency

• Centralized DSM systems

• propagate all memory references to a well-known central server

• central server serializes all requests to enforce strong consistency

• all accesses are remote so performance sucks!

• the central server is a bottleneck



Jonathan Walpole CSE515 - Distributed Computing Systems 9

Cost of Implementing Strong Consistency

• Migrating DSM systems

• allow pages to migrate among processors

• pages are faulted in on first access

• with the right locality of reference most accesses will be local and
few page migrations will be required

• a single page is at a single location at any time so strong
consistency is ensured

• no parallel read access for any given page

• many read faults so performance sucks!

• And anyway, how do you know where to look for the page
you want?



Jonathan Walpole CSE515 - Distributed Computing Systems 10

Cost of Implementing Strong Consistency

• DSM systems with read-only page replication and central
server for writes

• first read access faults and causes creation of local copy of page

• subsequent read accesses are serviced from the local copy

• write accesses fault and are coordinated by the central server

• either write accesses are propagated via atomic broadcast to all
read-only copies, in which case write accesses are very expensive
so performance sucks!

• or, write accesses cause invalidation of all read-only copies via
broadcast, in which case many more read faults occur and
performance sucks!

• Doesn’t take advantage of locality for writes!



Jonathan Walpole CSE515 - Distributed Computing Systems 11

Cost of Implementing Strong Consistency

• DSM systems with read-write replication and migration

• read or write accesses create local “cached” copy of a page

• cached pages can be read or written locally

• strong consistency requires reads and writes to be serialized

• maintain a single writable copy at the page “owner” and read-only
pages elswhere

• migrate ownership and propagate updates or invalidations as before

• So how do you find the owner of the page you want, or the
replicas to update or invalidate?

• centralized vs decentralized location service?

• use of broadcast protocols



Jonathan Walpole CSE515 - Distributed Computing Systems 12

What Do We Really Want?

• Parallel reads

• Parallel writes to different locations in a page

• unless the programmer says they are related

• Parallel reads and writes to different locations in a page

• unless the programmer says they are related

• Synchronization primitives to allow the programmer to
specify when requests are related

• Local writes

• writable copy located locally when writes occur

• Prefetching / eager update via multicast on write completion



Jonathan Walpole CSE515 - Distributed Computing Systems 13

Release Consistency

• Directives define boundaries of access to shared data

• acquire - obtain updated copy

• release - finished updating shared memory locations

• Weak consistency semantics based on timing of the
propagation of updates

• release consistency - updates propagated on release

• lazy release consistency - updates propagated on subsequent
acquire

• Release consistency makes the shared memory
sequentially consistent for programmers that use
synchronization primitives correctly

• an optimized implementation of a strong consistency DSM?



Jonathan Walpole CSE515 - Distributed Computing Systems 14

Synchronization Primitives

• Acquire and release are examples of synchronization
primitives for DSMs based on release consistency

• they are explicit calls to the DSM system allowing it to manipulate
remote pages appropriately before completing the calls

• What about locking primitives in strong consistency DSMs?

• Test and set lock?

• When exactly is a write fault triggered during TSL?

• How is TSL implemented on an SMP?

• Synchronization primitives need to implement cache invalidation and
use memory barriers on some architectures (depending on the
memory consistency model)

• They need to be known to the DSM system


