
Multi-phase Commit Protocols 1

Multi-phase Commit Protocols

Based on slides by Ken Birman,
Cornell University

Multi-phase Commit Protocols 2

Failure model impacts costs!
• Byzantine model is very costly: 3f+1

processes needed to overcome f failures,
protocol runs in f+1 rounds

• This cost is unacceptable for most real
systems, hence protocols are rarely used

• Main area of application: hardware fault-
tolerance, security systems

Multi-phase Commit Protocols 3

Commit with
simpler failure model

• Assume processes fail by halting
• Coordinator detects failures (unreliably)

using timouts. It can make mistakes!
• Now the challenge is to terminate the

protocol if the coordinator fails instead
of, or in addition to, a participant!

Multi-phase Commit Protocols 4

Commit protocol illustrated

ok to commit?

ok with us… times out
abort!

Note: garbage collection protocol not shown here

crashed!

Multi-phase Commit Protocols 5

Example of a hard scenario

• Coordinator starts the protocol
• One participant votes to abort, all others

to commit
• Coordinator and one participant now fail
... we now lack the information to correctly

terminate the protocol!

Multi-phase Commit Protocols 6

Commit protocol illustrated

ok to commit?

okdecision
unknown!

vote
unknown!ok

Multi-phase Commit Protocols 7

Example of a hard scenario
• Problem is that if coordinator told the failed

participant to abort, all must abort
• If it voted for commit and was told to commit, all must

commit
• Surviving participants can’t deduce the outcome

without knowing how failed participant voted
• Thus protocol “blocks” until recovery occurs

Multi-phase Commit Protocols 8

Skeen (’82):
Three-phase commit

• Seeks to increase availability
• Makes an unrealistic assumption that

failures are accurately detectable
• With this, can terminate the protocol

even if a failure does occur

Multi-phase Commit Protocols 9

Three-phase commit
• Coordinator starts protocol by sending request
• Participants vote to commit or to abort
• Coordinator collects votes, decides on outcome
• Coordinator can abort immediately
• To commit, coordinator first sends a “prepare to

commit” message
• Participants acknowledge, commit occurs during

a final round of “commit” messages

Multi-phase Commit Protocols 10

Three phase commit protocol
illustrated

ok to commit?

ok

commit

prepare to
commit

prepared...

Note: garbage collection protocol not shown here

Multi-phase Commit Protocols 11

Observations about 3PC
• If any process is in “prepare to commit”

all voted for commit
• Protocol commits only when all

surviving processes have
acknowledged prepare to commit

• After coordinator fails, it is easy to run
the protocol forward to commit state (or
back to abort state)

Multi-phase Commit Protocols 12

Assumptions about failure
• If the coordinator suspects a failure, the

failure is “real” and the faulty process, if it
later recovers, will know it was faulty

• Failures are detectable with bounded delay
• On recovery, process must go through a

reconnection protocol to rejoin the system!
(Find out status of pending transactions that
terminated while it was not operational)

Multi-phase Commit Protocols 13

Problems with 3PC
• With realistic failure detectors (that can make

mistakes), protocol still blocks!
• Bad case arises during “network partitioning”

when the network splits the participating
processes into two or more sets of
operational processes

• Can prove that this problem is not avoidable:
there are no non-blocking commit protocols
for asynchronous networks

Multi-phase Commit Protocols 14

Situation in practical systems
• Most use protocols based on 2PC: 3PC is more

costly and ultimately, still subject to blocking!
• Need to extend with a form of garbage collection

to avoid accumulation of protocol state
information (can occur in the background)

• Some systems simply accept the risk of blocking
when a failure occurs

• Others reduce the consistency property to make
progress at risk of inconsistency after failure.

