Failure model impacts costs!

+ Byzantine model is very costly: 3f+1

I\/IuIti-phase Commit Protocols processes needed to overcome ffailures,
protocol runs in f+1 rounds

« This cost is unacceptable for most real
systems, hence protocols are rarely used

. . « Main area of application: hardware fault-
Cornell University tolerance, security systems

Based on slides by Ken Birman,

Multi-phase Commit Protocols 1 Multi-phase Commit Protocols 2

Commit with
simpler failure model

+ Assume processes fail by halting

Commit protocol illustrated

ok to commit?

. qurdipator detects failures (gnreliably) I — |
using timouts. It can make mistakes! ... times out § Y crashed! ok with us
. . abort! |
+ Now the challenge is to terminate the bort T S

protocol if the coordinator fails instead
of, or in addition to, a participant!

v v v v

Note: garbage collection protocol not shown here

Multi-phase Commit Protocols 3 Multi-phase Commit Protocols 4

Example of a hard scenario

« Coordinator starts the protocol

+ One participant votes to abort, all others
to commit

« Coordinator and one participant now falil

. we now lack the information to correctly
terminate the protocol!

Multi-phase Commit Protocols 5

Commit protocol illustrated

ok to commit? §
\
n_é > >b vote
ok

decision —_—] k unknown!
unknown! [|

v v v v

Multi-phase Commit Protocols 6

Example of a hard scenario

Problem is that if coordinator told the failed
participant to abort, all must abort

« If it voted for commit and was told to commit, all must
commit

+ Surviving participants can’t deduce the outcome
without knowing how failed participant voted

+ Thus protocol “blocks” until recovery occurs

Multi-phase Commit Protocols 7

Skeen (’82):
Three-phase commit

+ Seeks to increase availability

« Makes an unrealistic assumption that
failures are accurately detectable

« With this, can terminate the protocol
even if a failure does occur

Multi-phase Commit Protocols 8

Three-phase commit

Coordinator starts protocol by sending request
Participants vote to commit or to abort
Coordinator collects votes, decides on outcome
Coordinator can abort immediately

To commit, coordinator first sends a “prepare to
commit” message

Participants acknowledge, commit occurs during
a final round of “commit” messages

Multi-phase Commit Protocols 9

Three phase commit protocol

illustrated
ok to commit? ~§
—
prepare to < - "
-t \
. — > b prepared...
commit
‘§ §- —
v v v M

Note: garbage collection protocol not shown here

Multi-phase Commit Protocols 10

Observations about 3PC

If any process is in “prepare to commit”
all voted for commit

Protocol commits only when all
surviving processes have
acknowledged prepare to commit

After coordinator fails, it is easy to run
the protocol forward to commit state (or
back to abort state)

Multi-phase Commit Protocols 11

Assumptions about failure

+ If the coordinator suspects a failure, the
failure is “real” and the faulty process, if it
later recovers, will know it was faulty

+ Failures are detectable with bounded delay

+ On recovery, process must go through a
reconnection protocol to rejoin the system!
(Find out status of pending transactions that
terminated while it was not operational)

Multi-phase Commit Protocols 12

Problems with 3PC

+ With realistic failure detectors (that can make
mistakes), protocol still blocks!

Bad case arises during “network partitioning”
when the network splits the participating
processes into two or more sets of
operational processes

Can prove that this problem is not avoidable:
there are no non-blocking commit protocols
for asynchronous networks

Multi-phase Commit Protocols 13

Situation in practical systems

« Most use protocols based on 2PC: 3PC is more
costly and ultimately, still subject to blocking!

+ Need to extend with a form of garbage collection
to avoid accumulation of protocol state
information (can occur in the background)

+ Some systems simply accept the risk of blocking
when a failure occurs

+ Others reduce the consistency property to make
progress at risk of inconsistency after failure.

Multi-phase Commit Protocols

14

