CSE 515 - Winter 2004

Fault tolerance in Distributed Systems

Class 10

CSE 515 - Winter 2004 Fault tolerance in Distributed Systems 1 of 30

3 of 30

Distributed Fault-tolerance: How to get it

- 1 Failure Detection
- 2. Membership
- 3. Communication
- 4. Replication management
- 5. Resilience
- 6. Recovery

CSE 515 - Winter 2004 Fault tolerance in Distributed Systems 2 of 30

© Andrew P. Black 2004

Membership

- A Process Group: a set of participants cooperating towards some common goal
 - Membership of the group changes over time as participants fail and recover
 - membership service keeps track of current membership, and informs members of the current
 - group view: the subset of the members that is available.
- Membership can also change deliberately
 - response to environmental or service requirements

© Andrew P. Black 2004

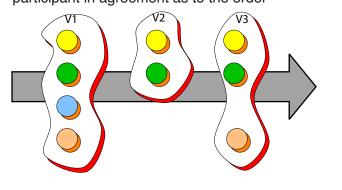
What is the "correct" Group View?

- Members' views must necessarily lag reality
 - What happens if a participant repeatedly leaves and rejoins the group?
- Working definition of correctness:
 - if membership doesn't change, and links don't fail, then all members eventually see the same view
- Membership service should be
 - consistent
 - accurate

CSE 515 - Winter 2004 Fault tolerance in Distributed Systems OGI SCHOOL OF SCIENCE & ENGINEERING OREGON HEALTH & SCIENCE UNIVERSITY CSE 515 - Winter 2004

Membership Service

- What happens if failure detection is:
 - inaccurate?
 - incomplete?
- Notification of changes in membership
 - should arrive everywhere in the same order
 - should be synchronized with respect to the other traffic seen by the group.


© Andrew P. Black 2004

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems 5 of 30

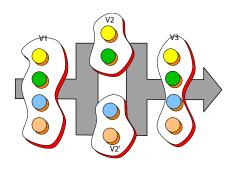
7 of 30

Linear Membership Service

- Views are totally ordered
 - system moves from one view to another with every participant in agreement as to the order

CSE 515 — Winter 2004
Fault tolerance in Distributed Systems

6 of 30

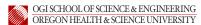

© Andrew P. Black 2004

· What happens when a partition occurs?

- 1. allow participants in the primary partition to proceed, while others are blocked. They can proceed only when the partition is healed.
- 2. Force the non-primary participants to crash. They can be recovered and join the system later
- In both cases, the service is degraded.

Partial Membership Service

- Keep delivering (inconsistent) views in both partitions.
 - When partition is healed, state is reconciled.
- No total order on views.
 - Strong partial order: concurrent views don't intersect

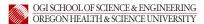

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems

Communication

Reliable delivery in the presence of faults in the channel:

Omission, timing and value faults

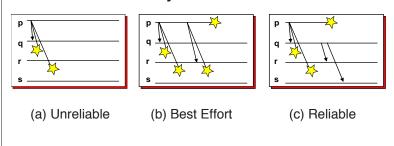


CSE 515 — Winter 2004 Fault tolerance in Distributed Systems 9 of 30

11 of 30

Reliable Delivery

- Mask the fault, by using multiple networks (spatial redundancy)
- Mask the fault, by send multiple copies of a message (temporal redundancy)
 - duplicates discarded at recipient
- Detect and recover (ack and retransmit)
 - acks may be +ve or -ve
- When should one mask rather than detect & recover?


CSE 515 — Winter 2004 Fault tolerance in Distributed Systems 10 of 30

© Andrew P. Black 2004

Sender Failures in Multicast

- Software multicast: sender might send to some recipients, and then fail.
- Hardware multicast:?

Levels of reliability:

OGI SCHOOL OF SCIENCE & ENGINEERING OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems OGISO

© Andrew P. Black 2004

Implementing Reliable Multicast

Error Masking and Error Recover

- Masking: all participants re-multicast every message they receive
- Recovery: save messages, and retransmit if the sender is seen to have failed
 - a stable message is one that has been received by all recipient
 - stability tracking protocol: when a msg is stable everywhere, it can be deleted from the stash
- · All dependent on failure detection

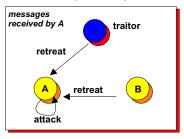
CSE 515 — Winter 2004 Fault tolerance in Distributed Systems

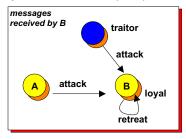
What about Assertion Faults?

- 1. Convert assertion faults into omission faults by using CRCs, signatures, etc.
 - deals with faults in the channel but not in the sender.
- 2. Achieve consensus amongst the multiple recipients of a multicast message.

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

© Andrew P. Black 2004

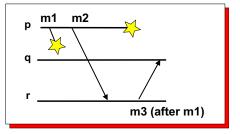

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems 13 of 30


15 of 30

Byzantine Agreement

(Why is this in the section on communication?)

 In the Byzantine Generals problem, some of the participants may be traitors (fail)



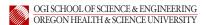
CSE 515 — Winter 2004 Fault tolerance in Distributed Systems 14 of 30

© Andrew P. Black 2004

- Agreement requires 3f + 1 participants to tolerate f Byzantine faults
 - even if the channel is perfect (no messenger is captured)
 - tolerating f faults requires f+1 rounds of messages

Causal Order despite Communication Failure

- m3 can never be delivered at q
- m2 should never become deliverable
 - not enough copies of m1 in the system


CSE 515 — Winter 2004
Fault tolerance in Distributed Systems

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems

Totally-Ordered Multicast

- Securing total order is equivalent to securing consensus
 - particpants have to agree on the delivery order!

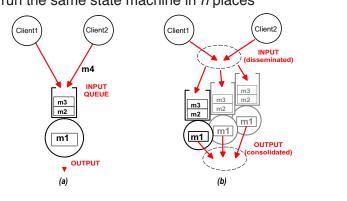
© Andrew P. Black 2004

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems 17 of 30

Replication Management

Replication is spatial redundancy

- Assume:
 - network does not partition
 - fail-stop: process failures are all crashes
 - all processes are deterministic state machines

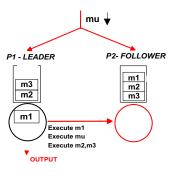

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems 18 of 30

© Andrew P. Black 2004

Active replication

- use atomic multicast to distribute system events (atomic = reliable + totally-ordered)
- run the same state machine in *n* places



CSE 515 — Winter 2004
Fault tolerance in Distributed Systems

19 of 30

Semi-Active Replication

- What if the programs are non-deterministic?
- Use leader-follower architecture:
 - leader makes all nondeterministic choices, and disseminated the results to the followers.
 - not necessary to use atomic multicast, since execution order can be disseminated too; reliable multicast will do

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems 20 of 30

© Andrew P. Black 2004 © Andrew P. Black 2004

Other Options

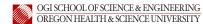
Passive Replication

- replicas log commands, but don't execute them
 - what if processes are non-deterministic ...

P1 - PRIMARY P2- BACKUP m3 m1 Checkpoint S(m1) Empty LOG

Lazy Replication

- · Ladin's gossip algorithm
- Causal order


OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems 21 of 30

What about Partitions?

Weighted Voting

- Any set of participants with a majority of the votes can proceed
 - -w = write quorum, r = read quorum, n = nr of votes
 - require 2w > n and r + w > n
- Did you spot the deliberate error?
 - n = 7, r = w = 4
 - 4 nodes ...

CSE 515 — Winter 2004
Fault tolerance in Distributed Systems

22 of 30

© Andrew P. Black 2004

© Andrew P. Black 2004

Coteries

- A set Q of sets, such that each quorum in Q overlaps with every other quorum
 - $Q = \{(a, b), (b, c), (a, c)\}\$ is a coterie of $\{a, b, c, d\}$
 - Weighted voting majorities are a special case

Resilience

So: we have value redundancy

- What do we do with the multiple (possibly conflicting) values?
- Consumers should reach agreement!
- Sometimes, the inputs are not exactly the same:
 - clock synchronization
 - readings from replicated thermometers

Recovery

After and un-masked, detected failure!

- Recover state from stable storage
 - not necessarily disks
- Checkpointing
 - Coordinated at all participants (like consistent cut protocol)
 - Uncoordinated (may cause multiple rollbacks: the domino effect)

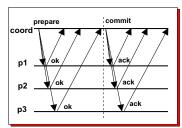
CSE 515 - Winter 2004 Fault tolerance in Distributed Systems 25 of 30

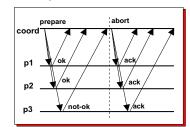
27 of 30

Logging

- Conceptually similar to checkpointing
 - replaying the log requires that processes are deterministic
 - logging may be pessimistic or optimistic
 - optimistic logging might require roll-back
 - If system is non-deterministic, all non-deterministic choices must be logged too.

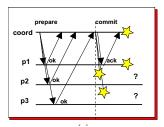
OGI SCHOOL OF SCIENCE & ENGINEERING OREGON HEALTH & SCIENCE UNIVERSITY


CSE 515 - Winter 2004 Fault tolerance in Distributed Systems 26 of 30


© Andrew P. Black 2004

© Andrew P. Black 2004

Atomic Commitment


2PC is the most common protocol

• If a transaction comits, its effects are durable.

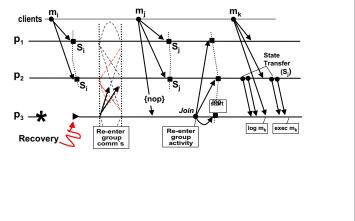
2PC can block

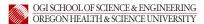
- coordinator can fail between prepare and commit/ abort
- other participants are blocked waiting for decision.
- 3PC is non blocking so long as a majority of the processes are correct.

CSE 515 - Winter 2004 Fault tolerance in Distributed Systems

CSE 515 - Winter 2004 Fault tolerance in Distributed Systems

State Transfers


A failed replica must be recovered and reintegrated into the system


- Normally application dependent, since we wish to minimize the network traffic
- The state to be transferred is a moving taget!
 - We must ensure that state is transferred faster than it is changed

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems 29 of 30

Totally ordered broadcast can be used to mark the instant at which a replica rejoins

CSE 515 — Winter 2004 Fault tolerance in Distributed Systems 30 of 30

© Andrew P. Black 2004