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Two Top-level Topics:

 

1.Taxonomy

 

– Terminology

– Mapping the space of dependability

 

2.Paradigms for distributed fault tolerance

 

– A high-level view of the ways that we can build fault-
tolerance into a distributed system.
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What’s the connection between...

 

... fault tolerance and distribution?

 

• Distribution needs fault tolerance

• Fault tolerance needs distribution
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Taxonomy

 

Why bother?

 

1.

2.
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Faults, Errors and Failures

 

• Fault

 

– An 

 

event

 

 (presumably, undesired)

 

• Error

 

– A 

 

state

 

 (presumably bad) internal to the (sub-) 
system

 

• Failure

 

– externally observable behavior of (sub-)system no 
longer meets its specification

– requires the existence of a specification! 
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Fault Models

 

Why do we need a fault model?

 

• There is always some catastrophe too 
serious too be tolerated

• Dependability is not free

 

When building a distributed system:

 

• we need a way of describing the faults 
despite which we must be dependable

• We focus on 

 

interaction

 

 faults
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Omissive Faults

 

• Omission: some component does not 
engage in a particular interaction (ever)

• Crash: some component does not engage 
in an interaction, nor in any of the 
subsequent interactions. Also known as 
“fail stop”

• Timing: some component does not engage 
in a particular interaction at the right time

 

– All omissive faults are in the time dimension
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Assertive faults

 

• The data communicated in an interaction 
are wrong

 

–

 

Syntactically

 

 wrong, 

 

e.g.

 

, packet format is out of 
conformance to protocol

–

 

Semantically

 

 wrong, e.g., packet format is OK, but 
data does not conform to reality
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Consistency Faults

 

• If a component is specified as interacting 
with other components in multiple ways, we 
can also get consistency faults, 

 

e.g.

 

,

 

– a multicast message might be sent to some peers but 
not to others — 

 

inconsistent omission

 

– it might not be sent at all — 

 

consistent omission

 

– the “copies” of the messages might have different 
contents — 

 

inconsistent assertive
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Coverage

 

We might be asked: how likely is it that this 
system will be dependable?

 

• To answer such a question, we must first 
ask: in the face of what eventualities?

 

– Environmental assumption: probability that the 
environment will behave as we have assumed

- temperature in given range, not more than assumed 
number of faults of the assumed kind

– Operational assumptions: probability that the 
programs will do what we have assumed
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How do computers fail?

 

• Gray (1986) study:

 

– 42%: incorrect system administration

– 25%: buggy software

– 18%: hardware

– 14%: environmental 

- (9% power failures > 4 hours)

– 3%: other

 

• Some categories more under-reported than 
others.
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Strategies for Dependability

 

1.Avoid or mask all of the faults that you can

2.Tolerate the rest

 

– prevent the fault causing an error, or

– prevent the error from causing a failure

 

3.Provide for recovery if a failure does occur

 

– Not always possible, 

 

e.g.

 

, with aeroplane flight 
control
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Fault Tolerance

 

Fault tolerance comes through 

 

redundancy

 

 in space, time and value

 

•

 

space

 

 redundancy: several copies of the 
same component, 

 

e.g.

 

, disks, servers

•

 

time

 

 redundancy: repeat the action, 

 

e.g.

 

, 
send multiple copies of message, restart 
failed computation (after a Heisenbug)

•

 

value

 

 redundancy: add extra data, e.g., 
error correcting codes, signatures
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Error processing

1.Detect the error
– time-outs

– value redundancy

2.Recover from it
– backward error recovery, e.g., retransmit lost 

message, restore from checkpoint

– forward error recovery, i.e., continue on, correcting 
effects of the error

3.Mask the error
– in a lower level component, e.g. process-pair.
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Modularity

• Modularity is the key to fault tolerance

– allows for independence of hardware and software 
components

– allows for replication of components

– allows a component to be replaced by a sub-system 
of higher dependability

– allows graceful degradation to a lower level of 
service
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Modularity and Publish-Subscribe
–Conceptual (V&R Fig 3.21)

–
Fault-tolerant (V&R Fig 
6.9(b)
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Distributed Fault-tolerance:
How to get it

1.Failure Detection

2.Membership

3.Communication

4.Replication management

5.Resiliance

6.Recovery
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Failure Detection

• To recover from a failure, you have to 
detect it first

• Even if you can mask the failure, you still 
need to detect it

– Why?

• Failure detectors can fail!

• A detcetor is

– accurate, if correct processes are not labeled “failed”

– complete: failed processes are eventually reported
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Local Failure Detectors

• Assume perfect channel between detector 
and target

– Watch-dog components

– self checking routines or boards

• Timeliness may still be a problem
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n ≥≥≥≥ 2f + 1

– In (a), it is impossible to tell which node is faulty

– In (b) if we know that f = 1 (at most 1 node is faulty), 
it must be node B
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Distributed Failure Detection

• Perfect failure detectors: (strong accuracy 
& strong completeness) possible if

– failures are crashes

– system is synchronous

– channel is perfect, or omissions are bounded

• Normally, failure detectors are imperfect:

– no bounds on channel failure

– no bounds on delay
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FLP Incompleteness

Fischer, Lynch & Paterson 1985

• In an asynchronous system with one faulty 
processor, it’s impossible to guarantee 
consensus.

• An eventually weak failure detector (p199) 
would enable one to reach consesus.

• So:

– deduce that it’s impossible to build even an eventually 
weak failure detector in an asynchronous system


