CSE 515 — Winter 2004

RPC & RMS

Class 4

¥) OGISCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 1of23
OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

© Andrew P. Black 2002

On the second day...

John White invented RPC (1976)

+ Explored by Nelson in his Ph.D. (1981)
+ Implemented efficiently at PARC (1982)
Idea:

* Procedure Call is well understood way of
transferring data and control within a single
computer

+ extend it to 2 computers on a network

OGI SCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 30f23
OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

© Andrew P. Black 2004

In the beginning...

there were messages

* but the messages were without form!

— just a string of bytes

=develop marshalling libraries
- int2bytes(anint) or writelnt(anint, aStreamOrBuffer)
- bytesTolnt(aByteArray) or readInt(aStream)

* How do | know to unmarshall an int, not a

string?
¥ OGLSCHOOLOF SCIENCE & ENGINEERING CSE 515 — Winter 2004 20128
/i OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

© Andrew P. Black 2004

Goals

w@mﬂmmmmmm
be a major factor constraining further development of distributed computing.
Qur hope is that by providing communication with almost as much ease as local
procedure calls, people will be encouraged to build and experiment with distrib-
uted applications. RPC will, we hope, remove unnecessary difficulties, leaving
only the fundamental difficulties of building distributed systems: timing, inde-
pendent failure of components, and the coexistence of independent execution

environments.
We had two secondary aims that we hoped would support our purpose. We
wanted to make RPC communication highly efficient (within, say, a factor of
ACM T i on C Vol. 2, No. 1, February 1984

//'? OGI SCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 4of23
%// OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

© Andrew P. Black 2004

Goals Basic Architecture

* “Make distributed computing easy” CLIENT execute service | SERVER
CODE CODE
call return local call reply
— By making communication as easy as a local 4 4
procedure call, they hoped to encourage the writing CLIENT SERVER
of distributed applications syg | marshal marshal| g
ippe . unmarshal unmarshal
* RPC “removes unnecessary difficulties”,
leaving only the “fundamental difficulties” sessoN 1 | | demux [SESSION
o PROTOCOL A A Y| PRoTOCOL
— timing NETWORK !
— independent failure |
— coexistence of independent execution environments
¥) OGISCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 5of23 ///{,, OGI SCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 6of23
OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS 2//id OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS
© Andrew P. Black 2004 © Andrew P. Black 2004
Principle What about Objects?
The semantics of a remote call should be « Coulouris et al. claim that the Object Model
as close as possible to those of a local call is just right for distributed computing
o Except: ° ObJeCt mOdeI:
— You have to name the destination (binding) 1. ubiquitous object reference mechanism
. . . 2. send messages to objects, with objects as arguments
— Sharing of parameters is not possible .
) 3. objects respond autonomously by executing method
— Independent failures . .
4. objects export an interface
— 3rd party references 5. state of an object is somewhat encapsulated
* What works? 6. objects are widely shared
_ 7. objects are not explicitly deallocated
OGISCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 7of23 // OGISCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 Bof23
OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS 4/ OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

© Andrew P. Black 2004 © Andrew P. Black 2004

On the third day...
came Remote Message Send (RMI)

+ send an invocation message to a (possibly)
remote object

+ the identity of that object solves the binding
problem

* life is good!

¥) OGISCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 90f23
OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

© Andrew P. Black 2004

How good is the object model really?
* Object model:

1. ubiquitous object reference mechanism

- In a DS, this means that every object must have a
global name!

- Conceptually clean, but expensive to implement

- Ingalls: the important thing about cheating is not to

be caught (in implementing systems, not when
doing homework!)

-or at least, all objects must have the potential for a
global name

-cons up a global name only when it is needed

OGI SCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 110f23
OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

© Andrew P. Black 2004

Figure 5.3 Remote and local method invocations

ocal N C p
i local

(Tnvocation .

invocafion®{—

remote
invocation

'remote
invocation

o]

F

local
invocatio

Y D

/

%,

/// OGI SCHOOL OF SCIENCE & ENGINEERING

CSE 515 — Winter 2004 100f23
OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

© Andrew P. Black 2004

2. send messages to objects, with objects as
arguments

- arguments can’t always be object references
- send copies of an object?

- what are the consequences

3. objects respond autonomously by executing a
method

- this is a great match for distributed systems

- different objects at different locations can execute
different code

4. objects export an interface
- this is a great match too

%,,

© Andrew P. Black 2004

OGI SCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 120f23

OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

5. state of an object is somewhat encapsulated
- In a DS, state is really encapsulated

- Object encapsulation, not class encapsulation
- no “friends”

6. objects are widely shared

- In a distributed system, a message to a remote
object is 1000 times slower than a message to a
local object

- what impact does this have on wide sharing
- what impact does partial failure have on sharing?

7. objects are not explicitly deallocated
- but global GC is hard (but memory is cheap)

What’s Important in Distributed
Systems?

« Caching and copying as alternatives to
remote access

+ Immutable objects are a secret weapon
— Which object models support them?
+ Separating failures from exceptions

— An exception is a result that falls within the
specification of the object

— A failure occurs when an object fails to meet its

Y

© Andrew P. Black 2004

OGI SCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 130f23
OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

The RPC Protocol

+ Birrell & Nelson argue that using reliable
streams for RPC is unacceptable
— high set-up cost for each RPC (latency)
— cost of maintaining state for each client

— stream protocol does more than is required for the
particular case of an RPC

— since payload may be small, overhead is large

* Hence, they developed a special-purpose
transport

© Andrew P. Black 2004

OGI SCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 150f23
OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

specification
P OGISCHOOLOF SCIENCE & ENGINEERING CSE 515 — Winter 2004 140123
2//id OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

© Andrew P. Black 2004

Goals of PRC Transport

* minimize server load imposed per client

+ “exactly once” semantics:

— if the call returns, the procedure executed once
— if there is no return, then a failure is indicated
- procedure may have executed once, or not at all

— client will wait indefinitely provided server has not
crashed

+ Efficient when all data will fit in a packet

— common case is that packet will not be lost

//'? OGI SCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 16.0f 23
é/ OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

© Andrew P. Black 2004

Simple Calls Features of the Protocol
+ One request pkt and one response pkt e CallID
Caller machine Calleo machine 1. Allows callee to eliminate duplicate requests
User RPC+SUD. [N[CallD. dispatcherint, RPC+Swb Server 2. Allows caller to match-up responses with requests
. d)
calt send call pkt un b - ~— invoke proc docall .
2= K * Threading
await ack \L
L or et — No thread can have more than one call outstanding
Result[CallID, results]
return send results [return .
* Required state:
Fig.3. The packets transmitted during a simple call — Single counter on each client (what about reboots?)
— Lost pkts? — Slow server? — “High water mark” CallID per client on the server
— Slow clients? - can eventually be discarded
¥) OGISCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 170f23 //// OGI SCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 18of23
OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS %/ OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS
© Andrew P. Black 2004 © Andrew P. Black 2004
Com p I icated Cal Is Caller machine . Callee machine
User RPC + Stub RPC + Stub Server
. . . . cait |1 send canpie Call{CallID, Pkt = 0, pleaseAck,] start arg record
+ Transmitter responsible for retransmission Weor T
Ack[CalllD, Pkt =0]
— retransmitted request asks for explicit ack. b next i waitnext okt
T \lf_‘ Data[CalllD, Pkt = 1, dontAck,] invoke Sall
ransmit invoke cal 9 docall
— handles lost pkts, long calls, and long gaps s

. " Data[CallID, Pkt = 1, pleaseAck,]
« If caller receives ack but no response 1

Ack[CalllD, Pkt =1]

— sends probe packet, which demands an ack Waitfor resut
d/ Result[CalllD, Pkt = 2, dontAck,]
return Send result érsturn
- Why? ‘Wait for ack
Result{CallD, Pkt = 2, pleaseAck,] \]/
+ Caller will wait indefinitely so long as l Wi tor ok
) Ack{CalliD, Pkt =2] Ifﬁa/
probes are ack’d
H 1 H Fig.4. A compli d call. The m U] 0 ets. ration i
» Burden of this work is on client, not server reqive Tetranamission af the st argument packet reesting an sCknOwiottomar, nt ch
packet is ret; itted ing an ack led because no sut call arrived.
OGISCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 190f23 OGISCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 200f23
OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

© Andrew P. Black 2004 © Andrew P. Black 2004

Performance

Procedure Minimum Median Transmission Local-only
no args/results 1059 1097 131 9
1 arg/result 1070 1105 142 10
2 args/results 1077 1127 152 11
4 args/results 1115 1171 174 12
10 args/results 1222 1278 239 17
1 word array 1069 1111 131 10
4 word array 1106 1153 174 13
10 word array 1214 1250 239 16
40 word array 1643 1695 566 51
100 word array 2915 2926 1219 98
resume except’n 2555 2637 284 134
unwind except’n 3374 3467 284 196

— all times in microseconds (us)
— measured 12 000 calls in each case
— transmission times are calculated, not measured

OGISCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 210f23

Y

© Andrew P. Black 2004

OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

Server needs to be multi-threaded if

— Responding to calls is not CPU intensive

— There is a desire to maximise throughput or minimize
latency

ClientA ServerS ClientB Server S ClientA ServerS ServerT Partic. A Partic. B

I L 1 L |

, -

(a) (b) (c) (d)

OGI SCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 230f23

© Andrew P. Black 2004

OREGON HEALTH & SCIENCE UNIVERSITY RPC & RMS

Threading

— e.g., to be responsive to the Ul

+ Client needs to be multi-threaded if it needs
to continue working while waiting for a reply

Server A Client Server B Server A Client Server B
* v
(a) (b)
/// OGI SCHOOL OF SCIENCE & ENGINEERING CSE 515 — Winter 2004 220f23
RPC & RMS

¢//id OREGON HEALTH & SCIENCE UNIVERSITY

© Andrew P. Black 2004

