
1 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2002

CSE 515 — Winter 2004

RPC & RMS

Class 4

2 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

In the beginning…

there were messages

• but the messages were without form!

– just a string of bytes

develop marshalling libraries

- int2bytes(anInt) or writeInt(anInt, aStreamOrBuffer)

- bytesToInt(aByteArray) or readInt(aStream)

• How do I know to unmarshall an int, not a
string?

3 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

On the second day…

John White invented RPC (1976)

• Explored by Nelson in his Ph.D. (1981)

• Implemented efficiently at PARC (1982)

Idea:

• Procedure Call is well understood way of
transferring data and control within a single
computer

• extend it to 2 computers on a network

4 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

Goals

5 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

Goals

• “Make distributed computing easy”

– By making communication as easy as a local
procedure call, they hoped to encourage the writing
of distributed applications

• RPC “removes unnecessary difficulties”,
leaving only the “fundamental difficulties”

– timing

– independent failure

– coexistence of independent execution environments

6 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

Basic Architecture

���� ������ �	���
����

�������
���
���

�����

�����

�������

�����	

�����

�	�	�	�

����
�
����

������
����

����
�
�	��

������
�	��

�����	

�����

�	�	�	�

������� �������

��������� ���������

7 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

Principle

The semantics of a remote call should be
as close as possible to those of a local call

• Except:

– You have to name the destination (binding)

– Sharing of parameters is not possible

– Independent failures

– 3rd party references

• What works?

–

8 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

What about Objects?

• Coulouris et al. claim that the Object Model
is just right for distributed computing

• Object model:

1. ubiquitous object reference mechanism

2. send messages to objects, with objects as arguments

3. objects respond autonomously by executing method

4. objects export an interface

5. state of an object is somewhat encapsulated

6. objects are widely shared

7. objects are not explicitly deallocated

9 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

On the third day…

came Remote Message Send (RMI)

• send an invocation message to a (possibly)
remote object

• the identity of that object solves the binding
problem

• life is good!

10 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

Figure 5.3 Remote and local method invocations

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

11 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

How good is the object model really?

• Object model:

1. ubiquitous object reference mechanism

- In a DS, this means that every object must have a
global name!

- Conceptually clean, but expensive to implement

- Ingalls: the important thing about cheating is not to
be caught (in implementing systems, not when
doing homework!)

-or at least, all objects must have the potential for a
global name

-cons up a global name only when it is needed

12 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

2. send messages to objects, with objects as
arguments

- arguments can’t always be object references

- send copies of an object?

- what are the consequences

3. objects respond autonomously by executing a
method

- this is a great match for distributed systems

- different objects at different locations can execute
different code

4. objects export an interface

- this is a great match too

13 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

5. state of an object is somewhat encapsulated

- In a DS, state is really encapsulated

- Object encapsulation, not class encapsulation

- no “friends”

6. objects are widely shared

- In a distributed system, a message to a remote
object is 1000 times slower than a message to a
local object

- what impact does this have on wide sharing

- what impact does partial failure have on sharing?

7. objects are not explicitly deallocated

- but global GC is hard (but memory is cheap)

14 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

What’s Important in Distributed
Systems?

• Caching and copying as alternatives to
remote access

• Immutable objects are a secret weapon

– Which object models support them?

• Separating failures from exceptions

– An exception is a result that falls within the
specification of the object

– A failure occurs when an object fails to meet its
specification

15 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

The RPC Protocol

• Birrell & Nelson argue that using reliable
streams for RPC is unacceptable

– high set-up cost for each RPC (latency)

– cost of maintaining state for each client

– stream protocol does more than is required for the
particular case of an RPC

– since payload may be small, overhead is large

• Hence, they developed a special-purpose
transport

16 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

Goals of PRC Transport

• minimize server load imposed per client

• “exactly once” semantics:

– if the call returns, the procedure executed once

– if there is no return, then a failure is indicated

- procedure may have executed once, or not at all

– client will wait indefinitely provided server has not
crashed

• Efficient when all data will fit in a packet

– common case is that packet will not be lost

17 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

Simple Calls

• One request pkt and one response pkt

– Lost pkts? – Slow server?

– Slow clients?

18 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

Features of the Protocol

• CallID

1. Allows callee to eliminate duplicate requests

2. Allows caller to match-up responses with requests

• Threading

– No thread can have more than one call outstanding

• Required state:

– Single counter on each client (what about reboots?)

– “High water mark” CallID per client on the server

- can eventually be discarded

19 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

Complicated Calls

• Transmitter responsible for retransmission

– retransmitted request asks for explicit ack.

– handles lost pkts, long calls, and long gaps

• If caller receives ack but no response

– sends probe packet, which demands an ack

– why?

• Caller will wait indefinitely so long as
probes are ack’d

• Burden of this work is on client, not server

20 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

21 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

Performance

– all times in microseconds (µs)

– measured 12 000 calls in each case

– transmission times are calculated, not measured

22 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

Threading

• Client needs to be multi-threaded if it needs
to continue working while waiting for a reply

– e.g., to be responsive to the UI
���������	��
� ���	��
� ���������	��
� ���	��
�

��
��

23 of 23OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

CSE 515 — Winter 2004
RPC & RMS

© Andrew P. Black 2004

• Server needs to be multi-threaded if

– Responding to calls is not CPU intensive

– There is a desire to maximise throughput or minimize
latency

������
� ���	��
� ���	��
�������
� ���	��
� ������
�

����

�������
� �������
����	��
�

��
��
��
��

