
CPSC-662 Distributed Computing MultiJav

1

MultiJav: A Distributed Shared Memory 
System Based on Multiple Java Virtual 

Machines

X. Chen and V.H. Allan
Computer Science Department, Utah State 

University
1998

MultiJav: Introduction

• Built on concurrency supported within Java.
• No additional, non-standard specifications are necessary.
• MultiJav has fine granularity provided by sharing objects.
• User does not have to specify shared objects for each 

synchronization object.



CPSC-662 Distributed Computing MultiJav

2

Design Issues: Consistency

• Sequential consistency is natural, but incurs serious communication 
overhead.

• Weaker consistendy models save communication overhead at the cost of 
more restrictive programming:

• Release consistency requires programs to be data-race free.
• Entry consistency requires association of synchronization primitives with 

shared objects.

• JVM:
• Thread must copy back all assigned values from its local memory to the 

shared memory before it releases a lock.
• After a thread acquires a lock, it must update its lcoal copy of values from 

the shared memory before accessing them.
• This implements release consistency.
• In addition, Java’s volatile variables enforce sequential consistency. (?)

Design Issues: Page-Based vs. Object-Based

• Page-based systems normally have a single virtual address space
– Suffer from high cost of false sharing

• Object-based systems share variables or objects.
– Shared objects sometimes combined with synchronization variables or need

aqcuire/store operations.
• MultiJav

– All objects allocated by the user are potentially shared.
– False sharing happens at an object level.

• JVM has an object-based memory structure:
– No global variables.
– Impossible to pass a simple typed variable as a reference parameter (only 

objects are shared)
– All shared objects are located in shared memory (heap) as dynamically

allcoated blocks.
– Java thread cannot directly access objects without going through load/store

instruction.



CPSC-662 Distributed Computing MultiJav

3

Implementation: Overview

• MultiJav is distributed implementation of JVM.
• Each VM runs as a process, with all VMs connected through 

TCP/IP.
• Parallel programs start on one machine, and spawned threads 

migrate to other machines.
• Bytecode loading in MultiJav is dynamic, with the virtual 

machine trying to load the bytecode locally, and then 
contacting the root site to load the class.

Implementation: Synchronization

• Java uses a monitor concept for synchronization.
• Operations of a thread on a monitor:

– Enter: gain exclusive access to the object
– Exit: relinquish exclusive access to the object
– Wait: give up the loack and wait to be notified
– Notify: awaken a single thread with is waiting for the object
– Notify-all: awaken all threads waiting for an object

• Each monitor has wait queue (WQ) and a conditional wait 
queue (CQ).

• Each distributed monitor has a monitor owner site, which 
holds the monitor.
– Each site has its own WQ and CQ associated with a monitor. 
– The WQ contains local threads and requesting threads from remote

sites.



CPSC-662 Distributed Computing MultiJav

4

Implementation: Synchronization

Threads at three sites compete for the lock
a) Site 1 is the owner of the monitor. Several 

threads wait int the WQs of three sites. 
There are 2 requesting threads for Site 2 
and 3.

b) When Site 1 releases the lock, Thread 2 
acquires the lock. Thread 6 arrives at the 
queue

c) The owner site changes to Site 2 and 
Thread 3 acquires the lock. The request 
for Site 3 moves to Site 2 and a new 
requesting thread for Site 1 is spawned.

Implementation: Synchronization

Threads waiting in the CQs at three sites. Site 1 is the owner site of the monitor
It keept the valid notification board. If the current running thread at Site 1 executes
notify, Thread 3 is notified. If notify-all is executed, all the waiting threads are 
notified.



CPSC-662 Distributed Computing MultiJav

5

Implementation: Object-Based Address Space

• Objects are accessed through global handles.
• Each site maintains global handle table with reference to handle of local 

copy and reference count information.
• At first access of remote data, object is retrieved from remote site and 

local handle is allocated.
• During thread migration, only global handle table is sent, and shared 

objects are sent when they are referenced.
• Garbage collection uses reference counters.

The global handle of an object is a 
combination of machine identity and 
local handle.

Memory Coherence Model

• Java supports two memory constency models:
– Normally, shared objects are synchronized by user specified 

synchronization.
– Memory model of JVM is then similar to release consistency 

protocol.
– Volatile variables enforce sequential consistency.

• Multiple copies of the shared objects can exist among sites.
• Atomic memory access in JVM is at the variable level (32 

bits)
– False sharing possible.
– Use multiple write protocol to allow reads/writes to different variables 

of the same object.



CPSC-662 Distributed Computing MultiJav

6

Implementation: Release Consistency

• Release consistency model: 
– Synchronization occurs when one site p releases a lock and the other 

site q acquires it.
– Memory of site q must be consistent with site p.
– All update to shared variable at site p must be visible at site q.

• Synchronization of memory only necessary when ownership 
of monitor changes.
– Owner site p of a monitor sends the monitor to the new owner site q. 
– Occurs when wait or exit is called at site p and a thread at site q is in 

wait queue.
– Notify and notify-all do not cause memory synchronization.

Implementation: Release Consistency (2)

• Site p grants the lock to site q
1. Home site broadcasts the changes made to variables since the last 

memory consistency point.
2. Site q gets the lock.
3. Site q applies the changes and waits for replies from other sites to 

make sure that the changes have been applied globally.
4. A thread at site q acquires the lock (enters monitor) and continues to 

execute.
• Multiple-Write Protocol

– Changes at site p are accumulated. (Record values of atomit 
variables and position of variables in object.)

– Before write, a duplicate is created, and writes happen to new object.
– At time of release, the diff of object is obtained and broadcast to 

other sites for update.
– If site receives the diff from the site releaseing a lock, it may buffer 

the diff until a local thread acquires or releases a lock.
– If site has dublicated an object, it needs to apply diff to both copies.



CPSC-662 Distributed Computing MultiJav

7

Implementation: Sequential Consistency
• Volatile variables exist as fields of an object; can be identified at run-

time.
• Sequential consistency is achieved with multiple-reader, single-writer 

synchronization.
• Every volatile variable is bound to

– Local lock
– Global status flag (records read/write mode)
– Site of last known writer (keep a chain to current writer)

• Read operation
– Check status flag for read mode.

• If status flag in write mode
• Find current writer
• Request current writer to broadcast current value to all sites
• Change status to read mode

• Write operation
– Check status flag for write mode and whether we are current writer
– If in read mode, broadcast invalidation message
– If in write mode, but not currently last known writer, request current writer to 

relinquish control.


