
CPSC-662 Distributed Computing Object-Oriented Distributed Technology 2

1

Arguments and Results in RMI

• Semantics of passing arguments for RMI in object-oriented
languages needs to be defined. Why?

• Argument and Result passing in Java RMI:
– When type of parameter is defined as remote interface, argument or

result is passed as ROID.

– Other non-remote objects may be passed by value if they are
serializable.

• Which objects can be accessed by RMI?
– Any object can be accessed by RMI

– Distinguish between remote objects and local objects. (e.g. keywords
or classes with interface compiler)

– Use interface definition language (IDL)

• Problem: migration/replication

Location of Objects

• Is location of objects an issue?

• Mapping from name to ROID.
– e.g. lookup(name) -> proxy with ROID

• Mapping from ROID to location.

CPSC-662 Distributed Computing Object-Oriented Distributed Technology 2

2

Dynamic Binding

• Dynamic method binding should also apply to RMI.

• Smalltalk: Allow any message to be sent to any object, and
raise exception if method is not supported.
– Distributed Smalltalk: general-purpose proxies.

• Java RMI:
– dynamic binding as a natural extension of local case

– Example:
Shape aShape = (Shape) stack.pop();

float f = aShape.perimeter();

Garbage Collection

• Some languages (Java, Smalltalk) support garbage collection.

• Explicit memory management difficult/impossible in
distributed environment.

• Distributed garbage collection typically realized in ROID
modules. Each ROID module:
– keeps track how many sites hold remote ROIDs for each local object

– informs other ROID modules about generation/deletion of ROIDs for
their local objects.

• Local garbage collector collects objects with no local or
remote references.

• Reference counting (addROID() /removeROID()) over
unreliable networks?

