
CPSC-662 Distributed Computing Group Communication 2

1

Virtual Synchrony

• “Send to all members or to none”
– Who are the members, in particular in presence of failures?

• Group view: current list of members in the group.
– Group view is consistent among all processes.

– Members are added/deleted through view changes.

• Virtually synchronous atomic multicast:
– 1. There is a unique group view in any consistent state on which all

members of the group agree.

– 2. If a message m is multicast in group view v before view change c,
either no processor in v that executes c ever receives m, or every
processor in v that executes c receives m before performing c.

Virtual Synchrony (2)
• Define G as set of messages multicast between any two

consecutive view changes.

• All processors in a group view v that do not fail receive all
messages in G.

• A processor p that fails may not receive all of G; but we
know what p received; this simplifies recovery.

p

view change view change

• View change managed by group membership protocol.

CPSC-662 Distributed Computing Group Communication 2

2

ISIS
http://simon.cs.cornell.edu/Info/Projects/ISIS

• Group communication
toolkit

• Facilities:
– Multicast

– Group view maintenance

– State transfer

• Synchrony
– Closely synchronous

• All common events are
processes in same oreder
(total and causal ordering)

– Virtually synchronous
• Failures are synch-ordered

• Multicast protocols:

– FBCAST: unordered

– CBCAST: causally ordered

– ABCAST: totally ordered

– GBCAST: sync-ordered
• used for managing group

membership

ISIS: CBCAST

• Group has n members

• Each member i maintains timestamp vector TSi with
n components.

• TSi[j] = timestamp of last message received by i
from j.

A B C
[0,0,0] [0,0,0] [0,0,0]

[1,0,0]

[1,1,0]

[1,0,0]

CPSC-662 Distributed Computing Group Communication 2

3

CBCAST (2)

mc_receive(msg m)

Pi: let Pj be sender of m

 let tsj be timestamp vector in m

 check:

 1. tsj[j] = TSi[j]

 /* this is next message in sequence from Pj
 no messages have been missed. */

 2. for all k<>j: tsj[k] <= TSi[k]

 /* Sender has not seen a message that the
 receiver has missed. */

 If both tests passed, message is delivered, else
 it is buffered.

mc_send(msg m, view v)

Pi: TSi[i] := TSi[i]+1

 send m to all members of view v

 send TSi[] as part of message m.

CBCAST: Example

4

6

8

2

1

5

3

7

8

2

1

5

3

5

8

2

1

5

3

7

8

2

1

5

2

6

8

2

1

5

3

7

8

3

1

5

vector in message
sent by P0

state of vectors at the other machines

CPSC-662 Distributed Computing Group Communication 2

4

Virtually Synchronous Group View Changes

• Virtual synchrony: all messages sent during a view vi are
guaranteed to be delivered to all operational members of vi

before ISIS delivers notification of vi+1.

• Process p joins to produce group vi+1:
– no message of vi is delivered to p

– all messages sent by members of vi+1 after notification has been sent
by ISIS will be delivered to p.

• Sender s fails in view vi:
– messages are stored at receivers until they are group stable.

– if sender of non group stable message fails, holder of message is
elected, and continues multicast.

• Some member q of vi fails, producing vi+1:
– did q receive all messages in vi?

– did q send messages to other failed processes?

ABCAST: causally and totally ordered

Originally: form of 2PC protocol

1. Sender S assigns timestamp (sequence number) to message.

2. S sends message to all members.

3. Each receivers picks timestamp, larger than any other
timestamp it has received or sent, and sends this to S.

4. When all acks arrived, S picks largest timestamp among them,
and sends a commit message to all members, with the new
timestamp.

5. Committed messages are sent in order of their timestamps.

Alternatives:

Sequencers

CPSC-662 Distributed Computing Group Communication 2

5

Interlude: Causally and Totally Ordered Communication:
A Dissenting Voice

Reference: D. Cheriton and D. Skeen

“Understanding the Limitations of Causally and Totally Ordered Communication”, 14th ACM
Symposium on Operating Systems Principles, 1993

• Unrecognized causality (can’t say “for sure”)

– causal relationhips between messages at semantic level may not be
recognizable by the happens-before relationship on messages.

• Lack of serialization ability (can’t say “together”)

– cannot ensure serializable ordering between operations that correspond to
groups of messages.

• Unexpressed semantic ordering constraints (can’t say “whole story”)

– many semantic ordering constraints are not expressible in happens-before
relationship

• No efficiency gain over state-level techniques (can’t say efficiently)

– not efficient, not scalable

Interlude (2): Unrecognized Causality
Example 1: Shop Floor Control

client A

SFC 1

database

SFC 2

client B

“start” request
and reply

“stop” request
and reply

“start”
broadcasted

“stop”
broadcasted

?

CPSC-662 Distributed Computing Group Communication 2

6

Interlude (3): Unrecognized Causality
Example 2: Fire Control

P

Q

R

first “fire”
message

second “fire”
message

“fire out”
message

Reliable Multicast Protocol
(B.Whetten,T.Montgomery,S.Kaplan.

“A High-Performance, Totally Ordered Multicast Protocol”,
ftp://research.ivv.nasa.gov/pub/doc/RMP/RMP_dagstuhl.ps...)

• Entities:
– process:

• sender/receiver of packets

– group:
• basic unit of group communication.

• set of processes that receive messages sent to given IP Multicast
address and port.

– membership of a group can change over time

• Taxonomy:
– Quality of Service

– Synchrony

– Fault-Tolerance

CPSC-662 Distributed Computing Group Communication 2

7

RMP: Quality of Service (QoS)
• Quality of Service related to semantics.

• unreliable

– packet is received zero-or-more times at destination

– no ordering

• reliable

– packet is received at least once at each destination

• source-ordered

– packet arrives exactly once at each destination

– same order as sent from source

– no ordering guarantee when more than one source

• totally ordered

– serializes all packets to a group

RMP: Virtual Synchrony

• e.g. in ISIS (Birman et al.)

– All sites see the same set of messages before and after a
group membership change.

membership
change!

Pa Pb Pc PA PB PC PDPd

• Allows distributed applications to execute as if
communication was synchronous when it actually is
asynchronous.

CPSC-662 Distributed Computing Group Communication 2

8

RMP: Fault-Tolerance

• node failures, network partitions

• atomic delivery within partition:

– If one member of the group in a partition delivers packet (to
application), all members in that partition will deliver
packet if they were in the group when the packet was sent.

– No guarantee about delivery or ordering between partitions.

• K-resilient atomicity:

– Totally ordered

– Delivery is atomic at all sites that do not fail or partition,
provided that no more than K sites fail or partition at once.

– with K=floor(N/2)+1 atomicity guaranteed for any number
of failures.

RMP: Fault-Tolerance (cont)

• majority resilience:

– If two members deliver any two messages, they agree on
ordering of messages.

– Guarantees total ordering across partitions, but not
atomicity.

• total resilience (safe delivery):

– Sender knows that all members received it before it can be
delivered.

– One or more sites can fail before delivering the packet.

CPSC-662 Distributed Computing Group Communication 2

9

Algorithms in RMP

• Basic delivery algorithm
– handles delivery of packets to members

• Membership change algorithm
– handles membership change requests, updates view at

members.

• Reformation algorithm
– reconfigures group after failure, synchronizes members

• Multi-RPC algorithm
– allows non-members to sent to group

• Flow control and congestion control
– similar to Van Jacobson TCP congestion control

algorithm

ACKs in Reliable Multicast
• Def: Packet becomes stable: Sender knows that all

destinations have received packet.

• positive ACKs:

– quick stability

– scalability?

• cumulative ACKs:

– parameter: number of packets per ACK

– load vs. length of time for packet to go stable

• negative ACKs:

– burden of error detection shifts to destination

– sequence numbers

– time to go stable unbounded

– lost packet only detected after another packet is received.

CPSC-662 Distributed Computing Group Communication 2

10

Basic Delivery Algorithm

• NACKs for reliable delivery, ACKs for total ordering and
stability.

• packet ID: {RMP proc ID, seq # of proc, QoS level}

sender token site

1. send packet

2. send ACK with global seq# (timestamp)

• Functions of ACK:

• positive acknowledgment to sender (“token site has
received packet”)

• timestamp as global basis for detection of dropped
packets.

• Q: When does packet become stable?

Reaching Stability

• While sending ACK, token site forwards token to
next process in group:
– Before accepting token, member is required to have all

packets with timestamps less than in ACK.

– If site in group with N members receives token, it knows
that all packets with TS >= currTS-N have been received
by all members.

CPSC-662 Distributed Computing Group Communication 2

11

Basic Delivery Algorithm
• Each site has

– DataList: contains Data packets that are not yet ordered

– OrderingQ: contains slots:
• pointer to packet

• delivery status (missing, requested, received, delivered)

• timestamp

• Data packet arrives: placed in DataList

• ACK arrives: placed in OrderingQ, creating one or more
slots at end of queue if necessary

• Data packet or ACK arrives:
– scan OrderingQ: match Data packets in DataList with slots that have

been created by an ACK.

– when match is found, Data packet is transferred to slot.

– when whole occurs in OrderingQ, send out NACK, requesting for
retransmission of packet.

A Cool Homepage on Multicast Protocols:

http://hill.lut.ac.uk/DS-Archive/MTP.html

