CPSC-662 Distributed Computing Group Communication 2

Virtual Synchrony

“Send to all members or to none”
— Who are the members, in particular in presence of failures?

Group view: current list of members in the group.
— Group view is consistent among all processes.
— Members are added/deleted throwgdw changes.

Virtually synchronous atomic multicast:

— 1. There is a unique group view in any consistent state on which a
members of the group agree.

— 2. If amessagm is multicast in group view before view change

either no processor inthat executes ever receivem, or every
processor irv that executes receivesn before performing.

Virtual Synchrony (2)

» DefineG as set of messages multicast between any two
consecutive view changes.

» All processors in a group viewthat do not fail receive all
messages if.

» A processop that fails may not receive all &, but we
know whatp received; this simplifies recovery.

view change view change

o = o
O \\A \\:11}:::\ O
O O

* View change managed by group membership protocol.

. ®




CPSC-662 Distributed Computing Group Communication 2

http://sinmon.cs.cornell.edu/Info/Projects/ISIS
e Group communication » Multicast protocols:
toolkit
* Facilities: — FBCAST: unordered

— Multicast
— Group view maintenance
— State transfer

* Synchrony
— Closely synchronous
« All common events are GBCAST: sync-ordered

processes in same oreder « used for managing group
(total and causal ordering) membership

— Virtually synchronous
* Failures are synch-ordered

CBCAST: causally ordered

ABCAST: totally ordered

|ISIS: CBCAST

» Group hast members

« Each membermaintains timestamp vect®f with
n components.

« TY[j] = timestamp of last message received by
fromj.

A 1000] B 1000] € 1000]
[1,0,0]

[1,1,0]
\

3




CPSC-662 Distributed Computing Group Communication 2

CBCAST (2)

nc_send(nmsg m View v)

P: TS[i] := TS[i]+1
send mto all menbers of viewv
send TS;[] as part of message m

nc_receive(nsg m
P: let P, be sender of m
let ts; be timestanp vector in m
check:
1. tsi[j] = TS[j]
/* this is next nessage in sequence fromP,
no nmessages have been m ssed. */
2. for all k<>j: ts;[k] <= TS[K]
/* Sender has not seen a nessage that the
recei ver has mssed. */

If both tests passed, nessage is delivered, else
it is buffered.

CBCAST: Example
vector in message
sent by P,
4 3 3 3 2 3
6 7 5 7 6 7
8 8 8 8 8 8
2 2 2 2 2 3
1 1 1 1 1 1
5 5 5 5 5 5
g J
hd
state of vectors at the other machines




CPSC-662 Distributed Computing Group Communication 2

Virtually Synchronous Group View Changes

* Virtual synchrony: all messages sent during a weave
guaranteed to be delivered to all operational membess of
before ISIS delivers notification of, ;.

* Proces® joinsto produce groug,,:
— no message of is delivered t@
— all messages sent by members, gfafter notification has been sent
by ISIS will be delivered tp.
» Sendessfails in viewv;:
— messages are stored at receivers until thegraup stable.
— if sender of non group stable message fails, holder of message is
elected, and continues multicast.
» Some membeq of v, fails, producing/, ;:
— didqreceive all messagesvy?
— did q send messages to other failed processes?

ABCAST: causally and totally ordered

Originally: form of 2PC protocol
1. Sender Sassigns timestamp (sequence number) to message.
2. Ssends message to all members.

3. Each receivers picks timestamp, larger than any other
timestamp it has received or sent, and sendsthisto S

4. When all acks arrived, Spicks largest timestamp among them,
and sends a commit message to all members, with the new
timestamp.

5. Committed messages are sent in order of their timestamps.

Alternatives:
Sequencers




CPSC-662 Distributed Computing Group Communication 2

Interlude: Causally and Totally Ordered Communication:
A Dissenting Voice

Reference: D. Cheriton and D. Skeen

“Understanding the Limitations of Causally and Totally Ordered Communicafidtii ACM
Symposium on Operating Systems Principles, 1993

« Unrecognized causality (can’t say “for sure”)

— causal relationhips between messages at semantic level may not be
recognizable by thbappens-before relationship on messages.

» Lack of serialization ability (can’t say “together”)

— cannot ensure serializable ordering between operations that correspond to
groups of messages.

* Unexpressed semantic ordering constraints (can’t say “whole story”)

— many semantic ordering constraints are not expressibéppens-before
relationship

* No efficiency gain over state-level techniques (can't say efficiently)
— not efficient, not scalable

Interlude (2): Unrecognized Causality
Example 1: Shop Floor Control

client A >
SFC1 4\ < / >
database /

wcz |

client B >

v

v

‘start’ 2
“start’ request ~ broadcasted
andreply |

“stop” request

and reply 'stop”

broadcasted




CPSC-662 Distributed Computing Group Communication 2

Interlude (3): Unrecognized Causality
Example 2: Fire Control

“fire out”
message

v

N ;

first “fire” second “fire”
message message

Reliable Multicast Protocol

(B.Whetten, T.Montgomery,S.Kaplan.
“A High-Performance, Totally Ordered Multicast Protocol”,
ftp://research.ivv. nasa. gov/ pub/ doc/ RVMP/ RWP_dagst uhl . ps...)

o Entities:
— process

« sender/receiver of packets
— group

« basic unit of group communication.

¢ set of processes that receive messages sent to given IP Multicas
address and port.

— membershipf a group can change over time
e Taxonomy:

— Quality of Service

— Synchrony

— Fault-Tolerance

—




CPSC-662 Distributed Computing Group Communication 2

RMP: Quality of Service (QoS)

* Quality of Service related to semantics.
* unreliable
— packet is received zero-or-more times at destination
— no ordering
* reliable
— packet is received at least once at each destination
» source-ordered
— packet arrives exactly once at each destination
— same order as sent from source
— no ordering guarantee when more than one source

* totally ordered
— serializes all packets to a group

RMP: Virtual Synchrony

* e.g.inISIS (Birmaret al.)

— All sites see the same set of messages before and after g
group membership change.

v

» Allows distributed applications to execute as if
communication was synchronous when it actually is
asynchronous.




CPSC-662 Distributed Computing Group Communication 2

RMP: Fault-Tolerance

* node failures, network partitions
» atomic delivery within partition

— If one member of the group in a partition delivers packet (t
application), all members in that partition will deliver
packet if they were in the group when the packet was sent

— No guarantee about delivery or ordering betweantitions.
» K-resilientatomicity.
— Totally ordered
— Delivery is atomic at all sites that do not fail or partition,
provided that no more thdfisites fail or partition at once.

— with K=floor(N/2)+ 1 atomicity guaranteed for any number
of failures.

O

RMP: Fault-Tolerance (cont)

* majority resilience

— If two members deliver any two messages, they agree o
ordering of messages.

— Guarantees total ordering across partitions, but not
atomicity.
* total resilience (safe delivery):

— Sender knows that all members received it before it can pe
delivered.

— One or more sites can faifore delivering the packet.

—




CPSC-662 Distributed Computing Group Communication 2

Algorithmsin RMP

 Basic delivery algorithm
— handles delivery of packets to members
* Membership change algorithm

— handles membership change requests, updates view at
members.

» Reformation algorithm

— reconfigures group after failure, synchronizes members
* Multi-RPC algorithm

— allows non-members to sent to group
* Flow control and congestion control

— similar to Van Jacobson TCP congestion control
algorithm

ACKsin Reliable Multicast

« Def: Packet becomes stabBender knows that all
destinations have received packet.

* positive ACKs:
— quick stability
— scalability?
* cumulative ACKs:
— parameter: number of packets per ACK
— loadvs. length of time for packet to go stable
* negative ACKs:
— burden of error detection shifts to destination
— sequence numbers
— time to go stable unbounded
— lost packet only detected after another packet is receivetli.




CPSC-662 Distributed Computing Group Communication 2

Basic Delivery Algorithm

* NACKS for reliable delivery, ACKs for total ordering and
stability.
» packet ID: {RMP proc ID, seq # of proc, QoS level}
1. send packet

(N R

2. send ACK with global seg# (timestamp)
* Functions of ACK:

» positive acknowledgment to sender (“token site has
received packet”)

 timestamp as global basis for detection of dropped
packets.

* Q: When does packet become stable?

Reaching Stability

» While sending ACK, token site forwards token to
next process in group:

— Before accepting token, member is required to have all
packets with timestamps less than in ACK.

— If site in group witiN members receives token, it knows
that all packets witiS>= currTSN have been received
by all members.

10



CPSC-662 Distributed Computing Group Communication 2

Basic Delivery Algorithm

» Each site has
— DatalList: contains Data packets that are not yet ordered
— OrderingQ: contains slots:
 pointer to packet
 delivery status (missing, requested, received, delivered)
* timestamp

» Data packet arriveplaced inDatalList

» ACK arrives placed inOrderingQ, creating one or more
slots at end of queue if necessary

+ Data packet or ACK arrives

— scanOrderingQ: match Data packets DataList with slots that have
been created by an ACK.

— when match is found, Data packet is transferred to slot.

— when whole occurs i@rderingQ, send out NACK, requesting for
retransmission of packet.

A Cool Homepage on Multicast Protocols:

http://hill.lut.ac.uk/DS Archive/ MIP. ht m

11



