
CPSC-662 Distributed Computing Distributed File Systems

1

Distributed File Systems

• Issues in Distributed File Service

• Case Studies:
– Sun Network File System

– CMU Andrew File System

– Coda File System

– Web?

• Reading:
– Coulouris: Distributed Systems, Addison Wesley, Chapters 7,8

– A.S. Tanenbaum: Distributed Operating Systems, Prentice Hall, 1995,
Chapter 5

File Service Components

• File Service
– Operations on individual files

• Directory Service
– Manage directories

• Naming Service
– Location independence: files can be moved without their names being

changed.

– Common approaches to file and directory naming:
• Machine + path naming, e.g. /machine/path or machine:path

• Mounting remote file systems onto the local file hierarchy

• A single name space that looks the same on all machines

– Two-level naming: symbolic names as seen by user vs.binary names
as seen by system.

CPSC-662 Distributed Computing Distributed File Systems

2

Requirements

• Transparency:
– Access transparency

– Location transparency

– Concurrency transparency

– Failure transparency

– Performance transparency

– Replication transparency

– Migration transparency

• Others:
– Heterogeneity

– Scalability

– Support for fine-grained distribution of data

– Partitions & disconnected operation

File Sharing

• What is the semantics of file operations in a distributed system? What is
the problem?

• “Unix” semantics: the system enforces absolute time ordering on all
operations and always returns the most recent value.
– Straightforward for system with single server and no caching.

– What about multiple servers or caching clients?

– Relax semantics of file sharing.

• Session semantics:
– Changes to an open file are initially visible only to the process that modified

the file. Changes are propagated only when the file is closed.

– What if two processes cache and modify the file?

• Immutable files:
– Files are created and replaced, not modified.

– Problem of concurrent operations simply disappears.

• Atomic Transactions:
– BEGIN TRANSACTION / END TRANSACTION.

– Transactions are executed indivisbly.

CPSC-662 Distributed Computing Distributed File Systems

3

File Servers: System Structure

• Separation of file clients and file servers?

• Separation of file service and directory service?

• Where is state information to be maintained?

stateless servers vs. “stateful” servers.

fault tolerance shorter request messages

no OPEN/CLOSE calls better performance

no server space wasted on tables readahead possible

no limits on number of open files idempotency easier

no problems if a client crashes file locking possible

Sun’s Network File System (NFS)

• Architecture:
– Arbitrary collection of clients and servers share a common file

system.

– Every machine can be both a client and a server.

– Servers export directories for access by remote clients (defined in the
/etc/exports file).

– Clients access exported directories by mounting them remotely.

• Protocols:
– mounting

• Client sends a path name and server returns a file handle.

• Static mounting (at boot-up) vs. automounting.

• Hard mounting vs. soft mounting

– file and directory access
• Servers are stateless (no OPEN/CLOSE calls)

CPSC-662 Distributed Computing Distributed File Systems

4

NFS Implementation

system call layer

virtual file system layer (v-nodes) virtual file system layer

NFS client
(r-nodes)

local operating
system (i-nodes)

message to
server

message from
client

NFS server
local operating

system

client server

NFS Implementation: Issues

• File handles:
– specify filesystem and i-node number of file

– sufficient?

• Integration:
– where to put NFS on client?

– on server?

• Server caching:
– read-ahead

– write-delayed with periodic sync vs. write-through

• Client caching:
– timestamps with validity checks

CPSC-662 Distributed Computing Distributed File Systems

5

NFS Client Caching

• Potential for inconsistent versions at different clients.

• Solution approach:
– Whenever file cached, timestamp of last modification on server is cached as

well.

– Validation: Client requests latest timestamp from server (getattributes), and
compares against local timestamp. If fails, all blocks are invalidated.

• Validation check:
– at file open

– whenever server contacted to get new block

– after timeout (3s for file blocks, 30s for directories)

• Writes:
– block marked dirty and scheduled for flushing.

– flushing: when file is closed, or a sync occurs at client.

• Time lag for change to propagate from one client to other:
– delay between write and flush

– time to next cache validation

Andrew File System (AFS)
Design for Scalability

• Whole-file serving:
– on opening a file, the entire file is transferred to client

• Whole-file caching:
– persistent cache contains most recently used files on that computer.

• Observations:
– shared files updated infrequently

– working set of single user typically fits into cache on local machine

– file access patterns

– what about transactional data (databases)

CPSC-662 Distributed Computing Distributed File Systems

6

Andrew File System (AFS)
Design for Scalability

• Whole-file serving:
– on opening a file, the entire file is transferred to client

• Whole-file caching:
– persistent cache contains most recently used files on that computer.

• Observations:
– shared files updated infrequently

– working set of single user typically fits into cache on local machine

– file access patterns

– what about transactional data (databases)

AFS Implementation

user
program

Venus

Unix kernel Unix kernel

Vice

workstation server

CPSC-662 Distributed Computing Distributed File Systems

7

Opening a File in AFS

• User process issues open(FileName, mode) call.

• UNIX kernel passes request to Venus if file is shared.

• Venus checks if file is in cache. If not, or no valid callback
promise, gets file from Vice.

• Vice copies file to Venus, with a callback promise. Logs
callback promise.

• Venus places copy of file in local cache.

• UNIX kernel opens file and returns file descriptor to
application.

Cache Coherency

• Callback promise:
– Token from Vice server.

– Guarantee that Venus will be notified if file is modified.

• 2 states:
– valid:callback promise as received from server upon open call.

– cancelled: callback was issued when somebody issued an update to
file.

• Callback promise is checked whenever client opens file in
cache.

• What about callbacks that are lost?

• Callback renewals with current timestamp of file.

