CPSC-662 Distributed Computing Distributed File Systems

Distributed File Systems

Issues in Distributed File Service

Case Studies:
— Sun Network File System
— CMU Andrew File System
— Coda File System
- Web?

Reading:
— Coulouris: Distributed Systems, Addison Wesley, Chapters 7,8

— A.S. Tanenbaum: Distributed Operating Systems, Prentice Hall, 1995,
Chapter 5

File Service Components

File Service
— Operations on individual files

Directory Service
— Manage directories

Naming Service
— Location independence: files can be moved without their names beipg
changed.
— Common approaches to file and directory naming:
» Machine + path naming, e.gmachine/pathor machine:path
» Mounting remote file systems onto the local file hierarchy
» Assingle name space that looks the same on all machines

— Two-level naming: symbolic names as seen by vsleinary names
as seen by system.




CPSC-662 Distributed Computing Distributed File Systems

Requirements

e Transparency:
— Access transparency
— Location transparency
— Concurrency transparency
— Failure transparency
— Performance transparency
— Replication transparency
— Migration transparency

* Others:

Heterogeneity

Scalability

Support for fine-grained distribution of data
Partitions & disconnected operation

File Sharing

* What is the semantics of file operations in a distributed system? What is
the problem?

* “Unix” semantics: the system enforces absolute time ordering on all
operations and always returns the most recent value.
— Straightforward for system with single server and no caching.
— What about multiple servers or caching clients?
— Relax semantics of file sharing.
e Session semantics:

— Changes to an open file are initially visible only to the process that modified
the file. Changes are propagated only when the file is closed.

— What if two processes cache and modify the file?
e Immutable files:

— Files are created and replaced, not modified.

— Problem of concurrent operations simply disappears.
e Atomic Transactions:

— BEGIN TRANSACTION / END TRANSACTION.

— Transactions are executed indivisbly.




CPSC-662 Distributed Computing Distributed File Systems

File Servers: System Structure

» Separation of file clients and file servers?
» Separation of file service and directory service?

* \Where is state information to be maintained?

stateless servers VS. “stateful” servers.

fault tolerance shorter request messages
no OPEN/CLOSE calls better performance

no server space wasted on tables readahead possible

no limits on number of open files idempotency easier

no problems if a client crashes file locking possible

Sun’s Network File System (NFS)

* Architecture:

— Arbitrary collection of clients and servers share a common file
system.

— Every machine can be both a client and a server.

— Servers export directories for access by remote clients (defined in the
letc/exports file).

— Clients access exported directories by mounting them remotely.

* Protocols:
— mounting
 Client sends a path name and server returns a file handle.
 Staticmounting (at boot-upys. automounting
» Hard mountingvs.soft mounting
— file and directory access
» Servers are stateless (B®EMCLOSEcalls)




CPSC-662 Distributed Computing Distributed File Systems

NFS Implementation

client server
system call layer
virtual file system layentnodeg virtual file system layer
local operatlng NFS client NES server local operating
system iknodes (r-nodes system
h
Y
message to message from
server client
h

NFS Implementation: Issues

File handles:

— specifyfilesystemandi-node numbenof file
— sufficient?

Integration:

— where to put NFS on client?

— on server?

Server caching:

— read-ahead

— write-delayedwith periodicsync vs write-through
Client caching:

— timestamps with validity checks




CPSC-662 Distributed Computing Distributed File Systems

NFS Client Caching

Potential for inconsistent versions at different clients.

Solution approach:

— Whenever file cached, timestarplast modification on server is cached as
well.

— Validation Client requests latest timestamp from sergetdttribute$, and
compares against local timestamp. If fails, all blocks are invalidated.

» Validation check:
— atfile open
— whenever server contacted to get new block
— after timeout (3s for file blocks, 30s for directories)
» Writes:
— block marked dirty and scheduled for flushing.
— flushing: when file is closed, orsyncoccurs at client.
Time lag for change to propagate from one client to other:
— delay between write and flush
— time to next cache validation

Andrew File System (AFS)
Design for Scalability

* Whole-file serving:
— on opening a file, the entire file is transferred to client
* Whole-file caching:
— persistent cache contains most recently used files on that computer
* Observations:
— shared files updated infrequently
— working set of single user typically fits into cache on local machine
— file access patterns
— what about transactional data (databases)




CPSC-662 Distributed Computing

Distributed File Systems

Andrew File System (AFS)

Design for Scalability

* Whole-file serving:
— on opening a file, the entire file is transferred to client
* Whole-file caching:
— persistent cache contains most recently used files on that computer
* Observations:
shared files updated infrequently
working set of single user typically fits into cache on local machine
file access patterns
what about transactional data (databases)

workstation

AFS Implementation

server

user

Venus

progran\ /

Vice

v

Unix kernel

Unix kernel




CPSC-662 Distributed Computing Distributed File Systems

Opening a File in AFS

» User process issuegen(FileName, mode) call.
* UNIX kernel passes request to Venus if file is shared.

* Venus checks if file is in cache. If not, or no valallback
promise gets file from Vice.

* Vice copies file to Venus, with@allback promiseLogs
callback promise.

» Venus places copy of file in local cache.

* UNIX kernel opens file and returns file descriptor to
application.

Cache Coherency

» Callback promise:
— Token from Vice server.
— Guarantee that Venus will be notified if file is modified.
» 2 states:
— valid:callback promise as received from server upon open call.

— cancelled: callback was issued when somebody issued an update tc
file.

» Callback promise is checked whenever client opens file in
cache.

* What about callbacks that are lost?
» Callback renewals with current timestamp of file.




