

Archive material from

Edition 2

 of Distributed Systems:
Concepts and Design

© George Coulouris, Jean Dollimore & Tim Kindberg 1994

Permission to copy for all non-commercial purposes is hereby granted

Originally published at pp. 603-8 of Coulouris, Dolllimore and Kindberg, Distributed Systems, Edition 2, 1994.

Firefly RPC

Firefly RPC was designed as a vital component of the new software developed for the Firefly
multiprocessor at the DEC Systems Research Centre. It was intended that RPC would be the
primary means of communication between processes in the same or different computers and also
for system calls. The designers took an approach in which the performance of an RPC was
optimized for the ‘fast path’ – the path taken by the vast majority of RPCs. This implies that
minority activities such as dealing with multipackets and retransmissions should not intrude on the
fast path, so that the implementation is optimized for the normal case.

Schroeder and Burrows [1990] describe the steps in the fast path, giving times for each of
those steps. They provide a model of how time is spent in an average RPC. The emphasis is on the
performance of RPCs between different computers. Section 6.5 introduced the main costs involved
in an RPC; this section extends that analysis.

Firefly RPC makes use of client and server stub procedures generated from an interface
definition written in Modula2+, an extension to Modula2 designed for use in distributed systems.
The steps in the Firefly RPC fast path are as follows:

• the client program calls a remote procedure and control passes to a client stub procedure
which (1) obtains a packet buffer with a partially filled-in header, (2) marshals the call
parameters into a message, (3) sends the request message, and (4) receives and unmarshals
the reply;

• at the server, generic RPC run-time code receives the incoming request and looks up and
calls the appropriate server stub;

• the server stub (1) unmarshals the request message, but keeps the message buffer, (2) calls
the designated procedure, and (3) marshals the reply into the saved message buffer and sends
the reply to the client.

Note that although Firefly RPC deals with message retransmissions, acknowledgments,
multipacket request and reply messages and server threads, these mechanisms do not belong to the
‘fast path’ and need not be considered as part of the model for a normal RPC.

Marshalling

◊

Marshalling (and unmarshalling) is normally carried out by Modula2+ stub
procedures, which copy arguments to request messages and results from reply messages. Complex
types can be marshalled by calling marshalling procedures in a library. Measurements of
marshalling overheads were taken for the Firefly RPC implementation, by subtracting the time
taken for a null RPC to a separate local address space from the time taken for a similar RPC but
with given arguments. The Firefly implementation is such that the difference is accounted for only
by the costs of both marshalling and unmarshalling.

The marshalling times for a variable length array passed by reference as a return parameter
are given as 115 microseconds for a one-byte array, and 550 microseconds for a 1440-byte array.
These figures are for a microVAX II. The increase in marshalling time with size was found to be
linear for the case of arrays given, as long as they were shorter than the maximum that would fit in
a single packet.

Firefly RPC reduces marshalling costs, by not marshalling data unnecessarily, and by
eliminating copying steps. In particular, most parameters are passed in one direction only.

FIREFLY RPC

2

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

Modula2+ interface definitions distinguish between parameters that are passed in both directions,

IN

 parameters, which are transmitted from client to server and

OUT

 parameters, which are
transmitted from server to client.

IN

 parameters are not marshalled in the reply message and
similarly,

OUT

 parameters are not marshalled in the request message.
 If an RPC takes place between computers with the same architecture, then data types need

not be converted. Firefly monitors when data conversion is not required. If the size of a result
parameter is known and is small enough, Firefly reserves space for it in the reply packet, and a
pointer to this is passed by the server stub to the server procedure. The procedure can then write
the value directly into the message.

Packet initialization

◊

Network packet headers have to be initialized with appropriate values for
fields such as the destination address and port number. A multi-layer protocol stack, such as RPC/
UDP/IP/Ethernet, requires several headers to be initialized. To some extent, initialization costs can
be amortized by using packet headers with pre-initialized values in those fields that remain
constant for every packet sent by the process. The Firefly designers suggest that implementing
RPC directly over Ethernet packets would save about 100 microseconds per RPC.

In addition to headers, a cost arises from checksum calculations. Each protocol layer may
calculate a checksum, which is transmitted with the data for checking at the receiving end. The cost
of calculating a checksum increases with the packet size. Figures of 45 microseconds to calculate
the checksum for a 74-byte UDP packet, and 440 microseconds for a 1514-byte packet are quoted
for the microVAX II.

Shared packet buffers

◊

In the Firefly RPC design, packet buffers are mapped simultaneously and
permanently in both the kernel’s address space and those of all user processes. Stubs use these
buffers as the targets of their marshalling operations, so that no user-to-kernel data copying is
necessary. Furthermore, these buffers are accessible by DMA from the network controller, and no
copying is required inside the kernel for the data to reach the network controller.

The Firefly RPC buffer pool is shared between all user processes because of the difficulty in
answering the following question for any communication design: When an incoming packet
arrives, where should the data be placed? The identity of the destination process cannot be
ascertained until the packet has been stored and examined. In Firefly RPC, since the buffers are
shared between all processes, the kernel can choose any buffer and the problem is avoided.
However, this scheme is of limited applicability. Since user processes must be able to allocate and
de-allocate buffers from what is a shared pool, this scheme implies trust that no user process will
interfere with the buffers or copy private data. The risk is acceptable or non-existent in the case of
a single-user workstation or dedicated server computer, but not acceptable for a multi-user
computer.

Firefly RPC performance

◊

In order to summarize the relative costs for the actions that go to make
up an RPC, we now report the results described by Schroeder and Burrows. These are in fact a
mixture of measured and calculated component times, but they are sufficiently accurate when
totalled to provide for comparisons between the costs of the components. Two remote procedure
calls are considered:

Null

() is a null remote procedure call, and

MaxResult

(

buf

), transfers 1440

Figure 1 The component costs of Firefly remote procedure calls.

Procedure Action Time in microseconds

Null() Stubs and RPC run-time
Send+receive 74-byte call packet
Send+receive 74-byte result packet
TOTAL

606
954
954

2514

MaxResult(buffer) Stubs and RPC run-time
Marshal 1440-byte result packet
Send+receive 74-byte call packet
Send+receive 1514-byte result packet
TOTAL

606
550
954

4414
6524

FIREFLY RPC

3

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

bytes of data from the server to the caller’s buffer, which is given as the argument

buf

. The Firefly
RPCs we shall consider are implemented by an exchange of two packets: the call packet and result
packet. The RPCs are between MicroVax-based Firefly multiprocessors over a 10 megabits-per-
second Ethernet. We shall not concern ourselves with the multiprocessor nature of the Firefly, and
assume a single processor is used at both client and server.

The designers of Firefly RPC went to great pains to optimize their implementation. This
included hand-coding critical parts of the code in assembler. The total time for an RPC is made up
of three main components:

• the time spent in the client and server stubs to construct the two packets for transmission; this
includes buffer allocation and local procedure calling within the RPC run-time software;

• the time to send and receive the call packet; and

• the time to send and receive the result packet.

Figure 1 gives the calculated times, which differ slightly from the measured times. The marshalling
of the reply packet is carried out by a stub, but is listed separately for clarity.

The costs for sending and receiving the packets are as shown in Figure 2. The items in this
table are self-explanatory, except that the item ‘set up message transfer’ involves enqueuing the
message for transmission, and communicating with the network controller via a dedicated Firefly
processor. Figure 4 summarizes the division between hardware and software costs. Note that the
single most costly component of message transmission in the

Null

() case is the time taken to wake
up the RPC thread awaiting a packet. The Firefly implementation did not use the optimization of

spinning

, whereby an idle processor remains in the context of the last thread to execute, in case this

Figure 2 The costs, in microseconds, of sending and receiving a packet.

Action 74-byte packet 1514-byte packet

– Send–

Initialize packet headers and checksum 104 499

User-kernel context switch 37 37

Set up message transfer 147 147

DMA transfer to controller 70 815

Ethernet transmission 60 1230

– Receive –

DMA transfer to/from controller 80 835

Handle receive interrupt 191 191

calculate UDP checksum 45 440

Wake up RPC thread 220 220

TOTAL 954 4414

 SoftwareHardware

Null()

MaxResult(buffer)

Figure 3 Relative hardware and software costs for remote procedure calls.

Note:‘Hardware’ includes DMA and Ethernet transfer times. ‘Software’ includes times to
communicate with network controllers.

FIREFLY RPC

4

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

same thread is the next to be scheduled. This optimization would have reduced this cost
considerably.

Considering remote procedure calls overall, we can see that the ratio of software costs to
hardware costs varies considerably according to the size of the packets required for the call, and is
very high in the case of

Null

 (see Figure 3). The hardware costs (DMA and network transmission
times taken together) make up about 17 per cent of the overall costs for

Null

, but about 47 per cent
of the overall costs for

MaxResult(buffer)

.
The remainder of the time taken by these calls is accounted for by actions taken directly by

the processor. Increasing the network bandwidth by a factor of 10, from 10 megabits per second to
100 megabits per second, would reduce the time for

Null

 by only about 110 microseconds – just a
4 per cent improvement. On the other hand, increasing the speed of the CPU by a factor of 10 would
give a saving for a call to

Null

 of about 75 per cent.
As a final point it should be noted that, apart from marshalling, data copying is avoided in

the Firefly implementation. As explained above, the shared buffer pool implementation used to
achieve this is not applicable to a multi-user environment. Most RPC implementations carry
additional memory-to-memory copying overheads.

Summary

The Firefly RPC implementation concentrates upon remote procedure calls between processes
residing at different computers. It has been optimized for the common case in which arguments and
results are sent in single packets. Data type conversion is omitted except between heterogeneous
computers; packet headers are partially pre-initialized; and packet buffers are shared between the
kernel and user processes. The resulting performance is good, but not demonstrably better than
others (faster implementations exist, but on different processors). Performance would be worse on
a multi-user computer, because packet buffers could not be shared. Nonetheless, the implementors
took pains to account for the time spent in an RPC. The results confirm the assertion of Chapter 6,
that a large proportion of RPC delay is accounted for by the operations of the operating system and
RPC run-time, rather than hardware. Scheduling costs, which are a large proportion of the null RPC
delay, could have been improved by the technique of spinning.

Figure 4 Relative hardware and software costs when sending and receiving a packet.

Sending
software

Hardware Receiving
software

74 bytes

1514 bytes

Note: ‘Hardware’ includes DMA and Ethernet transfer times. ‘Software’ includes times to
communicate with network controllers.

