

Archive material from

Edition 2

 of Distributed Systems:
Concepts and Design

© George Coulouris, Jean Dollimore & Tim Kindberg 1994

Permission to copy for all non-commercial purposes is hereby granted

Originally published at pp. 566-79 of Coulouris, Dolllimore and Kindberg, Distributed Systems, Edition 2, 1994.

Chorus

History and architectural overview

Chorus began life in 1979 as a research project on distributed systems at the Institut National de
Recherche en Informatique et Automatique (INRIA) in France. The goal of the project was to
develop a message-based computational model for constructing a modular distributed operating
system. Chorus went through three design phases at INRIA, and three corresponding versions of
the distributed operating system emerged. In version 0 a model of communicating processes called

actors

 was developed and a prototype implementation was made using a small kernel. In version
1 the previous design was ported from a LAN-based system to a distributed memory
multiprocessor. For version 2 a team that had been working on implementing UNIX joined the
project, and an attempt was begun to emulate UNIX using the Chorus kernel and re-using some of
the code written by the UNIX team. When the project ceased at INRIA, a company, Chorus
Systèmes, was set up to continue the development of Chorus on both LANs and multiprocessors.
The Chorus kernel (version 3), also called the

nucleus

, and a UNIX emulation built on top of it,
Chorus/MiX, are now being produced and developed by Chorus Systèmes [Rozier

et al

. 1988,
1990]. We describe Chorus version 3.3 in this section.

A Chorus system consists of uniprocessor or multiprocessor computers connected by a
network. Chorus is architecturally similar to Mach in many ways. The Chorus kernel is a
microkernel aimed at supporting subsystems. A Chorus subsystem is a collection of servers which
provide a binary emulation of an operating system (UNIX in particular), or which provide some
other major service to applications, such as the run-time support for a language. Generic run-time
support for object-oriented languages on top of the Chorus kernel is the subject of research [Lea

et
al

. 1993]. At the time of writing, the kernel has been implemented on the Intel 80386, Motorola
68030 and 88000 microprocessors, and Transputers, among others. A binary emulation of System
V Release 4 UNIX exists for Intel 80386-based and Motorola 88000-based computers, and a BSD
4.3 UNIX emulation is being implemented.

Chorus has been implemented as a basis for real-time process control systems running on
embedded distributed memory multiprocessors based on 68020, 80386 and Transputer
microprocessors.

Design goals and chief design features

Chorus has the following design goals in common with Mach (see Section 18.1 of edition 3):

•

microkernel support for open system services, accessed by message passing;

•

support for binary-level operating system emulation (in particular the emulation of UNIX)
and other subsystems;

•

transparent extensibility of kernel facilities to network operation;

•

flexible virtual memory implementation;

CHORUS

2

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

•

portability (the Chorus kernel is written in C++ and designed to be modular and split into
machine-dependent and machine-independent parts);

•

exploitation of shared memory multiprocessors.

Chorus also has the following goals and features:

Dynamically loadable servers

: Chorus aims to achieve the same degree of modularity and
openness as does Mach. Chorus supports dynamically loadable servers which may execute
either at user-level or within the kernel address space.

Enhancement of UNIX

: The Chorus design anticipates that users of the UNIX emulation
might want to use enhanced facilities provided by the underlying kernel from within UNIX
processes, such as multiple threads and the ability to create a new process at a remote
computer.

Support for server groups and server reconfiguration

: Chorus provides support for server
groups in the form of group addressing modes for sending messages, including multicast.
Port migration can be used to transfer management of a resource or collection of resources
dynamically between servers, and is similar to the transfer of port receive rights in Mach.

Distributed memory multiprocessor operation

: Chorus has been implemented on several
distributed memory multiprocessors. Processors used in embedded multiprocessor systems
may have relatively primitive hardware support for memory management. This has
constrained the provision of features that assume the existence of sophisticated MMU
hardware.

Real-time operation

: The Chorus design aims to support real-time subsystems on the kernel.
To this end, Chorus provides for flexible allocation of thread priorities and allows for
customized thread scheduling policies; threads executing within the kernel can be scheduled
pre-emptively.

Summary of the main Chorus abstractions

The main abstractions provided by the Chorus kernel (Figure 1) are as follows:

Actors

: A Chorus actor is an execution environment equivalent to a Mach task. An actor can
have one or more threads.

Ports

: A port is a unidirectional communication channel with an associated message queue.
Ports can be migrated between actors.

Port groups

: Ports can be made members of port groups. A port group is a destination for
messages, and there are several addressing modes for sending messages to a port group. Port
groups should not be confused with the port

sets

of Mach.

Figure 1 The main Chorus abstractions (messages and local caches not shown).

Region
Segment
(memory
object)

Actor

Address space

Port

Port group
Threads

Segment server actor

CHORUS

3

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

Messages

: A Chorus message consists of a variable length body (limited to 64 kilobytes),
and optionally a fixed-size (64-byte) header.

Regions, segments and local caches

: An actor’s address space is divided into regions, which
are as we defined them in Chapter 6. A region can be mapped onto a portion of a

segment

,
which is the equivalent of a Mach memory object. For each mapped segment the kernel
keeps a

local cache

, similar to a Mach cache object.

The virtual memory design in Chorus is very similar to that of Mach and we shall not pursue this
further even though its implementation is interesting [Abrossimov

et al

. 1989]. We now turn to the
main design features that do differ from Mach.

Process management model

The basic processing building blocks in Chorus are

actors

 and threads. An

actor

 is similar to a
Mach task and the chief components of its execution environment are an address space and a
collection of ports used to receive messages. Actors can be dynamically loaded into the kernel
address space, and their threads can execute in the kernel protection domain.

Servers are loaded dynamically at those computers where they are needed and are accessed
by message-based communication. Servers are generally run as user-level processes to ensure
mutual protection between the kernel and the servers it runs.

The price paid for this, however, is that of the extra context switches that occur in accessing
user-level servers, compared to kernel-provided services. The Chorus designers decided that, in the
case of some servers, the extra context switches incurred were too high a price to pay. They opted
instead for an architecture in which:

•

server code and data can be loaded dynamically at a computer as needed, and accessed via
message passing, but

•

a separate decision can be taken for each server as to whether the server program is added to
the contents of the kernel’s address space, or run in a private protection domain (Figure 2).

With this scheme, clients are unaware of whether a server with which they communicate is a user-
level actor or is executing within the kernel. Clients and servers use the same message passing
interface in either case. Moreover, the message passing interfaces can still be used between servers
that reside in the same kernel address space. Inside the kernel, the implementation of message
passing is designed to be efficient by taking advantage of shared memory to reduce data copying.
This illustrates the fact that these servers use the message passing interface only as a convention.

Address space protection boundary

Server S6 code and data

Servers dynamically loaded
into kernel address space

S4

User-level servers

Kernel code and
data

S6

Figure 2 Chorus servers.

Note: The figure shows the code and data for a server being dynamically loaded into the
kernel address space, where it will execute. It also shows some user-level servers,
which execute within private address spaces.

S1 S2 S3

S5

CHORUS

4

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

They can perform arbitrary accesses to one another’s data if they so choose, or if they contain bugs.
Note, however, that actors can be debugged at user-level. If their performance at user-level is
deemed unsatisfactory, they can be run later in the kernel, without altering the source code, to gain
the performance advantage this brings.

Chorus supports three different levels of privilege for threads accessing local resources.
Privilege is sometimes nominally ascribed to actors, but since only threads can take actions with
respect to resources, privilege really resides with threads. The three level of privilege are:

user privilege

: no direct access to machine resources; cannot invoke certain system calls;

system privilege

: no direct access to machine resources, but can invoke all system calls –
similar to the level of privilege of a UNIX process bearing the ‘root’ user identifier;

supervisor privilege

: complete access to machine resources.

We now describe these privileges in more detail, in the context of actors and threads.

Actors

◊

Every actor is either a

user actor

, a

system actor

 or a

supervisor actor

. System actors and
user actors have their own separate address spaces, and may not access that of the kernel. However,
the threads belonging to a system actor may make privileged system calls not available to those of
user actors. For example, unlike a user actor, a system actor’s thread can insert a port into a port
group used to provide a system service. System actors can be created only by threads belonging to
existing system actors, or by threads with supervisor privilege. At system initialization, one or
more system actors are created at each computer, which may create further system actors. The
kernel can check whether an actor is a system actor: its status is held securely in a table in the kernel
address space.

Supervisor actors differ from the other two types in that their code and data reside in the
kernel address space. Any program tested as a user-level actor can be run without source-level
alteration as a supervisor actor. However, in order to execute within the kernel, the binary code has
to be link-edited dynamically. There are two aspects to this. First it is necessary for kernel system
calls to be replaced by calls to kernel procedures. Since threads belonging to supervisor actors
execute in the kernel, they should take advantage of the cheapest available invocation mechanism.
Second, space has to be found in the kernel address space where the supervisor actor’s code and
data will reside. Neither the server program’s address space location, nor the addresses of the
kernel procedures that it calls are known in advance. Therefore all absolute program addresses used
in the server program must be set dynamically using load-time location information.

Note that not all supervisor actors can be run at user-level – even as system actors. This is
because the code for a supervisor actor can, for example, contain privileged machine instructions
for manipulating hardware registers. Attempting to execute these instructions at user-level would
result in a hardware exception. The three types of actor and their main properties are shown in
Figure 3.

Creating actors

◊

All actors are created with only one port – the so-called

default port

, to which
operations upon the actor are sent. A brand new actor consists of very little state: it has no threads
and, unlike a Mach task, it always has an empty address space. However, some initial
characteristics are defined: actors are created as children of existing actors, from which they
inherit, for example, their scheduling priority.

The system call to create an actor is

actorCreate

:

Figure 3 Types of actor, showing address spaces and allowable threads.

Actor type Private address space User threads Supervisor threads

User actor Yes Yes Yes (created externally)

System actor Yes Yes (system privilege) Yes

Supervisor actor No: shares kernel’s No Yes

CHORUS

5

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

actorCreate(actorInit, actorCap, type, status)

creates a new actor as a child of

actorInit

, with type

type

 (

USER

,

SYSTEM

 or

SUPERVISOR

).
A capability for the new

actor

 is returned via

actorCap

;

status

 specifies whether or not all new

threads in the new actor are to be suspended initially.

(The structure of capabilities in Chorus is described below.) A new actor always resides at the same
computer as its parent, so there is no need to specify a computer. The creation of actors at remote
computers is left to subsystems to implement.

User and supervisor threads

◊

The threads belonging to system actors are privileged in that they
may make certain system calls. This does not imply any special privileges with respect to direct
access to hardware resources such as physical memory and device registers. However, threads
belonging to any type of actor may execute as

supervisor threads

,

which execute in the address
space of the kernel, and with the processor in supervisor mode. They therefore have unlimited
access to hardware resources. Note that all the threads belonging to a supervisor actor have to be
supervisor threads, since their code is mapped into the kernel.

The system call

threadCreate

, which follows, is used to create a thread in an actor:

threadCreate(actorCap, privilege, status, priority, entry, stackPointer)

creates a new thread in an actor specified with the capability

actorCap

, with privilege

privilege

(

USER

 or

SUPERVISOR

) and with scheduling priority

priority

 relative to the process. The

initial program counter and stack pointer are

entry

 and

stackPointer

.

If

privilege

 has the value

USER

, then

entry

 and

stackPointer

 are addresses in the address space of
the given actor, which must be a user actor or system actor. If

privilege

 is

SUPERVISOR

, then

entry

must be an address of an instruction in the kernel address space (normally the address of a kernel
procedure).

System actors can create supervisor threads. How can a user-level actor come to know the
address of a kernel procedure? The address has to be looked up from the procedure’s name in the
symbol table of the kernel. However, the stack pointer for a supervisor thread is allocated by the
kernel, and the value given in

stackPointer

 is ignored in this case.
Threads are scheduled pre-emptively by the kernel according to individual thread priorities,

but these priorities can be set dynamically by actors. Chorus supports two-level scheduling. Thread
priorities are set relative to their actor’s priority, and actors are assigned absolute priorities. A
thread’s absolute priority is the sum of these two priorities. Even supervisor threads can be
scheduled pre-emptively, in order to meet real-time demands. By contrast, conventional
implementations of UNIX schedule processes executing kernel code without pre-emption.

Naming and protection

Chorus uses

capabilities

,

unique identifiers

 and

local identifiers

 as basic names for resources.

Capabilities

: These are the most general type of resource identifier in Chorus. They are used
for identifying and restricting access to resources such as segments managed by servers, and
also some resources managed by the kernel itself, notably actors and port groups. A
capability consists of a unique identifier, which is normally the identifier of a port, and an
additional 64-bit structure called a

key

 (Figure 4). The key can be used to identify a resource

Figure 4 A Chorus capability.

UI (64 bits) Key (64 bits)

CHORUS

6

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

from among multiple resources accessed via the same port. Servers choose the key so it is
hard to guess, and thus provides a degree of protection against illegal accesses to resources.

Unique identifiers

: Ports and other resources managed by the kernel are assigned 64-bit

unique identifiers

. Unique identifiers (UIs) are guaranteed to be unique within a network of
Chorus computers, over its lifetime. They are fabricated as bit strings with three components:
the type of the kernel resource identified by them (for example, port, actor or port group), the
identifier of the computer that created it and a local timestamp guaranteed to be unique over
the lifetime of the computer.

Local identifiers

: Local identifiers are used to name the threads and ports belonging to an
actor. They are 32-bit integers which are valid only within the actor which uses them. An
actor’s port can have aliases: its local identifier and its (globally valid) UI. Using the local
identifier is the most efficient, however: local identifiers are generated by the kernel for fast
access to the resources named. They are similar in this respect to Mach’s identifiers.

Identifying resources managed by groups

◊

In order that a service can be provided by different
servers at different times, or so that a service can be implemented at any one time by several
servers, the ports that processes use to receive requests can be collected in groups. Messages can
be addressed to port groups as well as ports, in one of several group-addressing modes.

The system calls for creating and manipulating port groups are as follows:

grpAllocate

Allocate a capability for a port group.

grpPortInsert
Insert a port into a port group.

grpPortRemove
Remove a port from a port group.

In order to manipulate the membership of a port group, an actor needs a capability for it.
Capabilities are allocated dynamically for port groups, via calls to grpAllocate. This call can be
used either to obtain a capability for a well-known port group, or to allocate a capability for a brand
new group. Any actor that knows the group capability can insert a port into the group, using
grpPortInsert, or remove a port, using grpPortRemove.

For sending purposes, only a port group’s UI is required, and not the capability. Group
identifiers provide a level of indirection, so that an actor using a group identifier does not need to
know which ports belong to the group. When a message is sent using a group identifier, the sender
selects one of the following addressing modes:

Multicast mode: An attempt is made to deliver the message, unreliably, to all members of the
group (this is also known as Broadcast mode).

Functional mode: The message is delivered to at most one member of the group, but the
member chosen is undefined in advance.

Selective functional mode: In this mode, the sender has to include a UI as well as the group
capability. The message is delivered to at most one member of the group, one which exists
at the same computer as the resource with the given UI.

We now provide illustrations of how these addressing modes are used to access resources managed
by groups of servers.

Multicast mode ◊ Consider the problem of requesting an operation upon a resource that is
managed by some member of a group of servers, but it is not known which. The request can be
multicast in a message containing a service-specific identifier of the resource. This can be a low-
level system identifier, or, for example, a file pathname. Upon receipt of the message, only the

CHORUS 7

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

server that manages the resource will perform the operation; the other servers can ignore the
request (Figure 5).

A significant disadvantage of this scheme is that all processes in the group have to receive
the message, even if it is not relevant to them. This arrangement would be impractical for the
processing of all operations on resources managed by the group. It is preferable for clients to
request a capability for the resource initially, using multicast. The capability returned by the server
that manages the resource will contain the identifier of a port, and all the client’s subsequent
requests can be sent directly to the server that owns this port. The initial multicast is effectively a
name lookup: a capability is returned when the client presents a resource name to the group.

 Note that the Chorus multicast service is primitive in that it is unreliable and provides no
ordering guarantees. This is a reasonable choice for a microkernel, considering that higher-level
requirements are liable to vary, and can be implemented on top of the Chorus mechanism. In
Chapter 11 we described reliable and ordered multicast facilities.

Functional mode ◊ To illustrate the use of functional addressing, we now consider the problem of
replacing a single server that provides a given service – for example, to replace a server with an
upgrade. One solution to this problem is for the service to be provided via a group of server ports,
which normally has only one member. All requests are sent to this group of servers, using
functional mode addressing. This addressing mode delivers the request messages to one member
of the group – and there is only one member. The replacement server can join this group by
inserting its port using grpPortInsert; the server to be replaced can leave the group by using
grpPortRemove to remove its port from the group (Figure 6). For reconfiguration transparency to
be achieved, care has to be taken to synchronize message processing so that client requests are
processed consistently.

Note that message delivery under functional mode group addressing can be implemented as
efficiently as unicast message delivery. Once a port belonging to the group has been located,
messages can be sent using a unicast protocol to that port until such time as the port leaves the
group. At that point, computers sending to the group will receive a negative acknowledgement
notifying them that they need to search for another port in the group.

Selective functional mode ◊ The selective functional group addressing mode is useful for
identifying a particular server from a group of servers. For example, a service that provides
information about computer loads could be implemented using an actor at each computer, which
monitors activity at that computer. Each such actor places a port in a common group. To find the
load at a particular computer, a request can be sent to this ‘load monitoring’ group, using selective
functional addressing with the UI of the required computer included in the address.

Kim

Kim
....

Sara
Maria
....

Sue
....

Port group

1. Request

2. Reply

Figure 5 A message multicast to a group.

CHORUS 8

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

Each computer manages a database of UIs which is searched when attempting to deliver a
message using selective functional addressing. Chorus includes in this database, by default, the UIs
of the computer, all local actors and all local ports. In addition, an actor can declare a UI of its
choice as belonging to its local database using uiDeclare, and it can remove it later using uiForget.
This allows servers to declare themselves as being associated with particular resources for the
purposes of selective functional addressing.

Transferring resources between servers ◊ We have already described how port groups are used to
implement reconfigurable servers. There is in addition a port migration mechanism whereby a port
can be removed from one Chorus actor and inserted in another. This transfers from one actor to
another the ability to receive messages sent to the port. Using this mechanism, management of an
individual resource – or a group of resources – can be transferred from one server actor to another.
After a port migrates, all requests sent to it become queued for reception by the new actor. This is
so, whether the senders of these requests use capabilities that contain the port’s UI, or use the
identifier of a group of which it is a member. As one would expect, ports remain members of port
groups when they migrate.

This mechanism is equivalent in its effects to the transfer of port receive rights in Mach; it
differs only in the fact that the actor at which the port initially resides is not required to take part
in the migration. Note that port migration seems at first sight to be equivalent to placing one actor’s
port in a port group and removing the other actor’s port. However, the group mechanism, unlike
port migration, can be used even if the original port becomes unavailable due to a crash of its host
computer. Under those circumstances, the original port is deemed automatically to have left the
group. In favour of port migration, however, note that managing ports requires less memory
overheads than managing port groups. Furthermore, the port migration mechanism offers control
over continuity of request handling, which cannot be guaranteed using the group mechanism.
Messages sent using functional mode addressing that were previously delivered to the original port
may be delivered to any port in the group after this port is removed – and not necessarily the one
intended as the replacement port.

Protection ◊ Chorus port identifiers and capabilities can be propagated freely in messages between
processes, without intervention by the kernel. Port identifiers exist in a sufficiently large name
space (they are 64-bit UIs) that guessing a port identifier that has been chosen at random is not
practically feasible. Capabilities can be made hard to forge through the choice of their keys, and so
resource protection can be applied even against actors that know the relevant port identifier.

However, capabilities cannot be used as the sole basis for a scheme to emulate UNIX user-
group-other protection semantics. For this reason, Chorus undertakes a form of authentication on
behalf of service implementors. That is, Chorus is able to identify securely the source of a message
to a server that receives it. For example, in order to emulate UNIX, actors implementing UNIX
processes can be associated with the equivalent of UNIX user identifiers.

Figure 6 Functional mode addressing.

grpPortRemove

grpPortInsert

Server Replacement

Port group

Client

CHORUS 9

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

To enable authentication to take place, a protection identifier is associated with each actor.
An actor’s protection identifier (PI) is by default that of the actor that created it; but it can be
changed by supervisor threads or system actor threads. When an actor receives a message, it can
request the kernel to specify the PI of the actor that sent it. A service could use this mechanism to
implement access control for the resources it manages.

Of course, this mechanism provides security only if the association between actors and PIs
is itself securely applied. At a single computer, the kernel can easily transmit PIs securely. An
authentication protocol is required, however, to provide secure authentication across a network, in
the face of possible eavesdropping, tampering and replaying. We discussed authentication
protocols in Chapter 7.

The Chorus approach to ensuring that only legitimate servers can provide a service is to make
port group membership secure. An actor may only add a port to a group if it possesses a capability
for it. Although the capability may contain a well known group UI, the key part is chosen
dynamically to be hard to guess. As long as port group capabilities are kept secret, actors cannot
masquerade as system servers through the port group mechanism.

Communication model and implementation
Communication system calls ◊ Chorus provides the following main system calls related to
communication:

ipcCall
Send a request and receive a reply.

ipcSend
Asynchronously send a message.

ipcReceive
Receive a message.

ipcReply
Reply to a message.

ipcSave, ipcRestore
Save/restore current message.

ipcGetData
Receive body of message.

ipcSysInfo
Return information about current message.

portCreate, portDelete
Create/delete a port.

portEnable, portDisable
Enable/disable a port.

portLi, portUi
Translate port’s UI to/from local identifier.

Like Mach, Chorus provides primitives for asynchronous message passing as well as for request-
reply interactions. IpcSend is used to send a message asynchronously. It can be given either a port
UI as a destination, or a group identifier with any addressing mode. IpcCall sends a request
message and awaits a reply. It can be given any type of destination as an argument except a group
addressed in multicast mode. The exception is because ipcCall cannot support the processing of
multiple copies of a request, or the multiple reply messages that may ensue.

Threads receive requests using ipcReceive, which can be given either a local identifier of a
port as the reception interface, or a special flag signifying that a message is to be received only from

CHORUS 10

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

a member of a set of local ports. After receiving a message, a thread can additionally call ipcSysInfo
to find out information about the message such as the protection identifiers associated with it,
before deciding whether to process and reply to it.

When a port is created, using portCreate, the kernel allocates and returns a UI for the port.
PortLi is used to convert the port’s UI into a local identifier which can be used with ipcReceive. As
we explained above, the local identifier is used to gain rapid access to the internal port data
structure. Chorus is inconsistent in not allowing the UIs of ports belonging to other actors to be
converted to LIs, as might be done for the purposes of efficient message sending. However, the
identifiers of these ports may be sent in messages, and only UIs will do for this purpose, since LIs
are only valid in the context of a single actor.

By setting an appropriate collection of ports into the enabled state, a thread can receive a
message from what is the equivalent of a Mach port set. However, there can be only one ‘port set’
per actor – that is, for all the threads within the actor. To be a member of this set, a port has to be
enabled. Every port is either enabled or disabled, and actors can change the state of their ports at
will, using portEnable and portDisable.

Threads reply to requests using ipcReply. Normally, the reply is to the last message received
by the thread. However, if they are able to request input-output without blocking, threads can postpone
replying to a request until the input-output has been performed, and meanwhile respond to other requests.
This is useful when, for example, a request arrives for some data that must be fetched from a disk,
but when the following request, from a different client, can be serviced without a disk access.
Replying out of order is achieved using the concept of current message. There is at most one
current message per actor at any one time. By default, the current message is the last one received.
A thread can save the current message using ipcSave, and then receive and reply to further
messages. When the thread is ready to reply to the saved request, it can restore it to be the current
message, by using ipcRestore and quoting a message identifier supplied by the kernel at the time
it was saved. IpcReply is then used to reply to this message.

Messages ◊ Chorus, unlike Mach, uses simple messages consisting of at most a fixed-size header
and a variable-sized body. A thread can use ipcGetData to extract the body of a message after
receiving its header and determining from the data within it the reception buffer to use.

Chorus uses copy-on-write to transfer large message bodies efficiently when ipcSend is used,
if MMU support for this is available. Unlike Mach, however, Chorus does not generate a new
address space region in the receiver as a by-product, but always uses the address range specified
by the receiver. There is also an option that can be used with ipcSend that causes the pages used to
implement the body of a message to be transferred to the receiving actor’s address space (assumed
to reside at the same computer) – and removed from the sender’s address space. This allows the
message to be transmitted entirely by page table manipulations. Moving rather than copying data
between address spaces in this way is particularly useful where, for example, a message is being
forwarded and the sender has no further need for the message body.

The network manager ◊ The Network Manager is an actor that extends the communication
facilities of the kernel transparently across a network, and is in this respect similar to Mach’s
network server. The Network Manager is responsible both for message transport and for port
location. When a thread presents a port UI to the kernel to send a message, this UI is looked up on
a list of ports known to be local. If it is not found there, then the port’s UI is automatically
forwarded by the kernel to the Network Manager, which attempts to locate the port by
communicating with other network managers. Once the port has been located, messages sent to the
port thereafter are delivered directly to a port belonging to the Network Manager, which forwards
them transparently. Similarly, the Network Manager is responsible for locating members of port
groups residing at computers across a network from the sending computer.

Discussion of main Chorus features
In summary, the Chorus microkernel is aimed at the support of open services, operating system
emulation – particularly System V UNIX – and other subsystems in a distributed system. It runs

CHORUS 11

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

on network-based distributed systems and on distributed memory multiprocessors. Its scheduling
architecture is designed to support real-time systems.

The Chorus kernel provides: multi-threaded processes called actors; communication using
ports and groups of ports as destinations; and sophisticated use of virtual memory allowing regions
to be backed by external pagers.

The port group and port migration facilities allow for services to be implemented by server
groups. However, the level of support for groups is limited to services in which resources are
partitioned between servers. Stronger multicast semantics are required when resources are
replicated between servers to achieve high availability. A resource or group of resources can be
migrated dynamically from one server to another using port migration or port group manipulations.
However, although we did not mention this earlier, achieving resource migration transparently in
practice involves considerable extra work in transferring resource state between the two servers
involved, and synchronizing them.

The communication facilities of Chorus are less dependent than those of Mach upon the
existence of sophisticated MMU hardware, and are, by the same token, less flexible in terms of
message structure.

The Chorus facility for allowing dynamically loaded servers to execute in the kernel address
space is an attempt to improve performance, at the expense of losing hardware protection
boundaries between such servers and the kernel. The facility has been utilized in the Chorus/MiX
UNIX emulation subsystem, as will be seen in the following section.

